These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 16162501)

  • 1. Loss of editing activity during the evolution of mitochondrial phenylalanyl-tRNA synthetase.
    Roy H; Ling J; Alfonzo J; Ibba M
    J Biol Chem; 2005 Nov; 280(46):38186-92. PubMed ID: 16162501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenylalanyl-tRNA synthetase contains a dispensable RNA-binding domain that contributes to the editing of noncognate aminoacyl-tRNA.
    Roy H; Ibba M
    Biochemistry; 2006 Aug; 45(30):9156-62. PubMed ID: 16866361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and mutational studies of the amino acid-editing domain from archaeal/eukaryal phenylalanyl-tRNA synthetase.
    Sasaki HM; Sekine S; Sengoku T; Fukunaga R; Hattori M; Utsunomiya Y; Kuroishi C; Kuramitsu S; Shirouzu M; Yokoyama S
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14744-9. PubMed ID: 17003130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chimeric human mitochondrial PheRS exhibits editing activity to discriminate nonprotein amino acids.
    Kartvelishvili E; Peretz M; Tworowski D; Moor N; Safro M
    Protein Sci; 2016 Mar; 25(3):618-26. PubMed ID: 26645192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal pathway for posttransfer editing reactions: insights from the crystal structure of TtPheRS with puromycin.
    Tworowski D; Klipcan L; Peretz M; Moor N; Safro MG
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):3967-72. PubMed ID: 25775602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenylalanyl-tRNA synthetase editing defects result in efficient mistranslation of phenylalanine codons as tyrosine.
    Ling J; Yadavalli SS; Ibba M
    RNA; 2007 Nov; 13(11):1881-6. PubMed ID: 17804641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation in evolution for a small monomeric phenylalanyl-tRNA synthetase of the tRNA(Phe) recognition nucleotides and initial aminoacylation site.
    Aphasizhev R; Senger B; Rengers JU; Sprinzl M; Walter P; Nussbaum G; Fasiolo F
    Biochemistry; 1996 Jan; 35(1):117-23. PubMed ID: 8555164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-specific differences in the requirements for translation quality control.
    Reynolds NM; Ling J; Roy H; Banerjee R; Repasky SE; Hamel P; Ibba M
    Proc Natl Acad Sci U S A; 2010 Mar; 107(9):4063-8. PubMed ID: 20160120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for discrimination of L-phenylalanine from L-tyrosine by phenylalanyl-tRNA synthetase.
    Kotik-Kogan O; Moor N; Tworowski D; Safro M
    Structure; 2005 Dec; 13(12):1799-807. PubMed ID: 16338408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-transfer editing in vitro and in vivo by the beta subunit of phenylalanyl-tRNA synthetase.
    Roy H; Ling J; Irnov M; Ibba M
    EMBO J; 2004 Nov; 23(23):4639-48. PubMed ID: 15526031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of phenylalanyl-tRNA synthetase complexed with phenylalanine and a phenylalanyl-adenylate analogue.
    Reshetnikova L; Moor N; Lavrik O; Vassylyev DG
    J Mol Biol; 1999 Apr; 287(3):555-68. PubMed ID: 10092459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple Quality Control Pathways Limit Non-protein Amino Acid Use by Yeast Cytoplasmic Phenylalanyl-tRNA Synthetase.
    Moghal A; Hwang L; Faull K; Ibba M
    J Biol Chem; 2016 Jul; 291(30):15796-805. PubMed ID: 27226603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial and eukaryotic phenylalanyl-tRNA synthetases catalyze misaminoacylation of tRNA(Phe) with 3,4-dihydroxy-L-phenylalanine.
    Moor N; Klipcan L; Safro MG
    Chem Biol; 2011 Oct; 18(10):1221-9. PubMed ID: 22035791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Editing of misaminoacylated tRNA controls the sensitivity of amino acid stress responses in Saccharomyces cerevisiae.
    Mohler K; Mann R; Bullwinkle TJ; Hopkins K; Hwang L; Reynolds NM; Gassaway B; Aerni HR; Rinehart J; Polymenis M; Faull K; Ibba M
    Nucleic Acids Res; 2017 Apr; 45(7):3985-3996. PubMed ID: 28168297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of tRNA-dependent editing in translational quality control.
    Ling J; Roy H; Ibba M
    Proc Natl Acad Sci U S A; 2007 Jan; 104(1):72-7. PubMed ID: 17185419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing.
    Wong FC; Beuning PJ; Silvers C; Musier-Forsyth K
    J Biol Chem; 2003 Dec; 278(52):52857-64. PubMed ID: 14530268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code.
    Yadavalli SS; Ibba M
    Nucleic Acids Res; 2013 Jan; 41(2):1104-12. PubMed ID: 23222133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase.
    Cvetesic N; Bilus M; Gruic-Sovulj I
    J Biol Chem; 2015 May; 290(22):13981-91. PubMed ID: 25873392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the amino acid activation center of the naturally editing-deficient aminoacyl-tRNA synthetase PheRS in Mycoplasma mobile.
    Han NC; Kavoor A; Ibba M
    FEBS Lett; 2022 Apr; 596(7):947-957. PubMed ID: 35038769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase.
    Dulic M; Perona JJ; Gruic-Sovulj I
    Biochemistry; 2014 Oct; 53(39):6189-98. PubMed ID: 25207837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.