BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 16162828)

  • 1. Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons.
    Wilson CJ; Goldberg JA
    J Neurophysiol; 2006 Jan; 95(1):196-204. PubMed ID: 16162828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine induced switch in the subthreshold dynamics of the striatal cholinergic interneurons: a numerical study.
    Szalisznyó K; Müller L
    J Theor Biol; 2009 Feb; 256(4):547-60. PubMed ID: 18976672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons.
    Goldberg JA; Wilson CJ
    J Neurosci; 2005 Nov; 25(44):10230-8. PubMed ID: 16267230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of apamin-sensitive SK channels to the firing precision but not to the slow afterhyperpolarization and spike frequency adaptation in snail neurons.
    Vatanparast J; Janahmadi M
    Brain Res; 2009 Feb; 1255():57-66. PubMed ID: 19100724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SK Ca2+-activated K+ channel ligands alter the firing pattern of dopamine-containing neurons in vivo.
    Ji H; Shepard PD
    Neuroscience; 2006 Jun; 140(2):623-33. PubMed ID: 16564639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons.
    Bennett BD; Callaway JC; Wilson CJ
    J Neurosci; 2000 Nov; 20(22):8493-503. PubMed ID: 11069957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic membrane properties and morphological characteristics of interneurons in the rat supratrigeminal region.
    Hsiao CF; Gougar K; Asai J; Chandler SH
    J Neurosci Res; 2007 Dec; 85(16):3673-86. PubMed ID: 17668857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons.
    Wilson CJ
    Neuron; 2005 Feb; 45(4):575-85. PubMed ID: 15721243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Somatostatinergic modulation of firing pattern and calcium-activated potassium currents in medium spiny neostriatal neurons.
    Galarraga E; Vilchis C; Tkatch T; Salgado H; Tecuapetla F; Perez-Rosello T; Perez-Garci E; Hernandez-Echeagaray E; Surmeier DJ; Bargas J
    Neuroscience; 2007 May; 146(2):537-54. PubMed ID: 17324523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons.
    Fransén E; Alonso AA; Dickson CT; Magistretti J; Hasselmo ME
    Hippocampus; 2004; 14(3):368-84. PubMed ID: 15132436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of temperature on calcium transients and Ca2+-dependent afterhyperpolarizations in neocortical pyramidal neurons.
    Lee JC; Callaway JC; Foehring RC
    J Neurophysiol; 2005 Apr; 93(4):2012-20. PubMed ID: 15548621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms underlying activation of the slow AHP in rat hippocampal neurons.
    Lima PA; Marrion NV
    Brain Res; 2007 May; 1150():74-82. PubMed ID: 17395164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-activated K+ current contributes to postexcitatory hyperpolarization in neocortical intrinsically bursting neurons.
    Franceschetti S; Lavazza T; Curia G; Aracri P; Panzica F; Sancini G; Avanzini G; Magistretti J
    J Neurophysiol; 2003 Apr; 89(4):2101-11. PubMed ID: 12686580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex autonomous firing patterns of striatal low-threshold spike interneurons.
    Beatty JA; Sullivan MA; Morikawa H; Wilson CJ
    J Neurophysiol; 2012 Aug; 108(3):771-81. PubMed ID: 22572945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistent sodium current, membrane properties and bursting behavior of pre-bötzinger complex inspiratory neurons in vitro.
    Del Negro CA; Koshiya N; Butera RJ; Smith JC
    J Neurophysiol; 2002 Nov; 88(5):2242-50. PubMed ID: 12424266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of firing patterns in fast-spiking cortical interneurons.
    Golomb D; Donner K; Shacham L; Shlosberg D; Amitai Y; Hansel D
    PLoS Comput Biol; 2007 Aug; 3(8):e156. PubMed ID: 17696606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study.
    Golomb D; Yue C; Yaari Y
    J Neurophysiol; 2006 Oct; 96(4):1912-26. PubMed ID: 16807352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Ca2+-independent slow afterhyperpolarization in substantia nigra compacta neurons.
    Nedergaard S
    Neuroscience; 2004; 125(4):841-52. PubMed ID: 15120845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats.
    Li Y; Gorassini MA; Bennett DJ
    J Neurophysiol; 2004 Feb; 91(2):767-83. PubMed ID: 14762149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-activated afterhyperpolarizations regulate synchronization and timing of epileptiform bursts in hippocampal CA3 pyramidal neurons.
    Fernández de Sevilla D; Garduño J; Galván E; Buño W
    J Neurophysiol; 2006 Dec; 96(6):3028-41. PubMed ID: 16971683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.