BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16162837)

  • 1. Nonlinear modeling of auditory-nerve rate responses to wideband stimuli.
    Young ED; Calhoun BM
    J Neurophysiol; 2005 Dec; 94(6):4441-54. PubMed ID: 16162837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal properties of responses to broadband noise in the auditory nerve.
    Louage DH; van der Heijden M; Joris PX
    J Neurophysiol; 2004 May; 91(5):2051-65. PubMed ID: 15069097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal nonlinearity during recovery from sequential inhibition by neurons in the cat primary auditory cortex.
    Nakamoto KT; Zhang J; Kitzes LM
    J Neurophysiol; 2006 Mar; 95(3):1897-907. PubMed ID: 16339004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning properties of turtle auditory nerve fibers: evidence for suppression and adaptation.
    Sneary MG; Lewis ER
    Hear Res; 2007 Jun; 228(1-2):22-30. PubMed ID: 17331685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of bandwidths in the inferior colliculus and the auditory nerve. I. Measurement using a spectrally manipulated stimulus.
    Mc Laughlin M; Van de Sande B; van der Heijden M; Joris PX
    J Neurophysiol; 2007 Nov; 98(5):2566-79. PubMed ID: 17881484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wiener-kernel analysis of responses to noise of chinchilla auditory-nerve fibers.
    Recio-Spinoso A; Temchin AN; van Dijk P; Fan YH; Ruggero MA
    J Neurophysiol; 2005 Jun; 93(6):3615-34. PubMed ID: 15659532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1040-9. PubMed ID: 15977734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of cochlear traveling wave and neural adaptation on auditory brainstem responses.
    Junius D; Dau T
    Hear Res; 2005 Jul; 205(1-2):53-67. PubMed ID: 15953515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal damping in response to broadband noise. II. Auditory nerve.
    Joris PX; Louage DH; van der Heijden M
    J Neurophysiol; 2008 Apr; 99(4):1942-52. PubMed ID: 18272875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural organization and responses to complex stimuli in the dorsal cochlear nucleus.
    Young ED; Spirou GA; Rice JJ; Voigt HF
    Philos Trans R Soc Lond B Biol Sci; 1992 Jun; 336(1278):407-13. PubMed ID: 1354382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model.
    Carney LH; Yin TC
    J Neurophysiol; 1988 Nov; 60(5):1653-77. PubMed ID: 3199176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving precise temporal processing properties of the auditory system using continuous stimuli.
    Lalor EC; Power AJ; Reilly RB; Foxe JJ
    J Neurophysiol; 2009 Jul; 102(1):349-59. PubMed ID: 19439675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory steady-state responses to chirp stimuli based on cochlear traveling wave delay.
    Elberling C; Don M; Cebulla M; Stürzebecher E
    J Acoust Soc Am; 2007 Nov; 122(5):2772-85. PubMed ID: 18189568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [An approach for proper recording of the unit discharge in auditory nerve and inferior colliculus].
    Pan T; Cao KL; Wang ZZ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2001 Oct; 23(5):481-4. PubMed ID: 12905867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency responses of cat rapidly adapting mechanoreceptive fibers.
    Güçlü B; Bolanowski SJ
    Somatosens Mot Res; 2003; 20(3-4):249-63. PubMed ID: 14675964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1389-98. PubMed ID: 17694859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of stimulus spectral contrast on receptive fields of dorsal cochlear nucleus neurons.
    Reiss LA; Bandyopadhyay S; Young ED
    J Neurophysiol; 2007 Oct; 98(4):2133-43. PubMed ID: 17671102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.