BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 16162843)

  • 21. Binding of mercury in renal brush-border and basolateral membrane-vesicles.
    Zalups RK; Lash LH
    Biochem Pharmacol; 1997 Jun; 53(12):1889-900. PubMed ID: 9256164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amino acid transporters involved in luminal transport of mercuric conjugates of cysteine in rabbit proximal tubule.
    Cannon VT; Zalups RK; Barfuss DW
    J Pharmacol Exp Ther; 2001 Aug; 298(2):780-9. PubMed ID: 11454942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of glutathione transport processes in kidney function.
    Lash LH
    Toxicol Appl Pharmacol; 2005 May; 204(3):329-42. PubMed ID: 15845422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reductions in renal mass and the nephropathy induced by mercury.
    Zalups RK
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):366-79. PubMed ID: 9144453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mercuric chloride-induced cytotoxicity and compensatory hypertrophy in rat kidney proximal tubular cells.
    Lash LH; Zalups RK
    J Pharmacol Exp Ther; 1992 May; 261(2):819-29. PubMed ID: 1578387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of organic anion transporters (OATs) in renal proximal tubules and their localization.
    Otani N; Ouchi M; Hayashi K; Jutabha P; Anzai N
    Anat Sci Int; 2017 Mar; 92(2):200-206. PubMed ID: 27614971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toxicological significance of renal Bcrp: Another potential transporter in the elimination of mercuric ions from proximal tubular cells.
    Bridges CC; Zalups RK; Joshee L
    Toxicol Appl Pharmacol; 2015 Jun; 285(2):110-7. PubMed ID: 25868844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mouse monocytes (RAW CELLS) and the handling of cysteine and homocysteine S-conjugates of inorganic mercury and methylmercury.
    Zalups RK; Koropatnick J; Joshee L
    J Toxicol Environ Health A; 2007 May; 70(10):799-809. PubMed ID: 17454556
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human renal organic anion transporters: characteristics and contributions to drug and drug metabolite excretion.
    Robertson EE; Rankin GO
    Pharmacol Ther; 2006 Mar; 109(3):399-412. PubMed ID: 16169085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of cysteine derivatives of styrene on the transport of p-aminohippurate ion in renal plasma membrane vesicles.
    Chakrabarti S; Vu DD; Côté MG
    Arch Toxicol; 1991; 65(5):366-72. PubMed ID: 1656914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of interactions of para-aminohippurate, probenecid, cysteine conjugates and N-acetyl cysteine conjugates with basolateral organic anion transporter in isolated rabbit proximal renal tubules.
    Dantzler WH; Evans KK; Wright SH
    J Pharmacol Exp Ther; 1995 Feb; 272(2):663-72. PubMed ID: 7853180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lack of luminal or basolateral uptake and transepithelial transport of mercury in isolated perfused proximal tubules exposed to mercury-metallothionein.
    Zalups RK; Cherian MG; Barfuss DW
    J Toxicol Environ Health; 1995 Jan; 44(1):101-13. PubMed ID: 7823324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mercuric conjugates of cysteine are transported by the amino acid transporter system b(0,+): implications of molecular mimicry.
    Bridges CC; Bauch C; Verrey F; Zalups RK
    J Am Soc Nephrol; 2004 Mar; 15(3):663-73. PubMed ID: 14978168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Luminal and basolateral mechanisms involved in the renal tubular uptake of inorganic mercury.
    Zalups RK; Minor KH
    J Toxicol Environ Health; 1995 Sep; 46(1):73-100. PubMed ID: 7666495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chlorotrifluoroethylcysteine interaction with rabbit proximal tubule cell basolateral membrane organic anion transport and apical membrane amino acid transport.
    Groves CE; Morales MN
    J Pharmacol Exp Ther; 1999 Nov; 291(2):555-61. PubMed ID: 10525071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small aliphatic dicarboxylic acids inhibit renal uptake of administered mercury.
    Zalups RK; Barfuss DW
    Toxicol Appl Pharmacol; 1998 Jan; 148(1):183-93. PubMed ID: 9465278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seventy-five percent nephrectomy and the disposition of inorganic mercury in 2,3-dimercaptopropanesulfonic acid-treated rats lacking functional multidrug-resistance protein 2.
    Zalups RK; Bridges CC
    J Pharmacol Exp Ther; 2010 Mar; 332(3):866-75. PubMed ID: 20032202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of 2,3-dimercaptopropane-1-sulfonate (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA) on the renal disposition of mercury in normal and uninephrectomized rats exposed to inorganic mercury.
    Zalups RK
    J Pharmacol Exp Ther; 1993 Nov; 267(2):791-800. PubMed ID: 8246154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane transport function in primary cultures of human proximal tubular cells.
    Lash LH; Putt DA; Cai H
    Toxicology; 2006 Dec; 228(2-3):200-18. PubMed ID: 16997449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced renal outer medullary uptake of mercury associated with uninephrectomy: implication of a luminal mechanism.
    Zalups RK
    J Toxicol Environ Health; 1997 Feb; 50(2):173-94. PubMed ID: 9048960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.