These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16164333)

  • 1. Conical intersection between the lowest spin-aligned Li3(4A') potential-energy surfaces.
    Brue DA; Li X; Parker GA
    J Chem Phys; 2005 Sep; 123(9):91101. PubMed ID: 16164333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential energy surfaces for the 1 (4)A('), 2 (4)A(') 1 (4)A(") and 2 (4)A(") states of Li(3).
    Li X; Brue DA; Parker GA
    J Chem Phys; 2008 Sep; 129(12):124305. PubMed ID: 19045021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond two-state conical intersections. Three-state conical intersections in low symmetry molecules: the allyl radical.
    Matsika S; Yarkony DR
    J Am Chem Soc; 2003 Sep; 125(35):10672-6. PubMed ID: 12940752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New method for calculating bound states: the A(1) states of Li(3) on the spin-aligned Li(3)(1 (4)A(')) potential energy surface.
    Li X; Brue DA; Parker GA
    J Chem Phys; 2007 Jul; 127(1):014108. PubMed ID: 17627338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-state conical intersections in cytosine and pyrimidinone bases.
    Kistler KA; Matsika S
    J Chem Phys; 2008 Jun; 128(21):215102. PubMed ID: 18537450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unified perspective on the hydrogen atom transfer and proton-coupled electron transfer mechanisms in terms of topographic features of the ground and excited potential energy surfaces as exemplified by the reaction between phenol and radicals.
    Tishchenko O; Truhlar DG; Ceulemans A; Nguyen MT
    J Am Chem Soc; 2008 Jun; 130(22):7000-10. PubMed ID: 18465862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The curvature of the conical intersection seam: an approximate second-order analysis.
    Paterson MJ; Bearpark MJ; Robb MA; Blancafort L
    J Chem Phys; 2004 Dec; 121(23):11562-71. PubMed ID: 15634121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct calculation of coupled diabatic potential-energy surfaces for ammonia and mapping of a four-dimensional conical intersection seam.
    Nangia S; Truhlar DG
    J Chem Phys; 2006 Mar; 124(12):124309. PubMed ID: 16599676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the characterization of three state conical intersections using a group homomorphism approach: mapping the full N-5 dimensional seam space.
    Schuurman MS; Yarkony DR
    J Chem Phys; 2006 Jun; 124(24):244103. PubMed ID: 16821969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the extent and connectivity of conical intersection seams and the effects of three-state intersections.
    Coe JD; Ong MT; Levine BG; Martínez TJ
    J Phys Chem A; 2008 Dec; 112(49):12559-67. PubMed ID: 19012385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel conical intersection topography and its consequences: the 1, 2 2A conical intersection seam of the vinoxy radical.
    Young RA; Yarkony DR
    J Chem Phys; 2005 Aug; 123(8):084315. PubMed ID: 16164299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multireference configuration interaction investigation of the excited-state energy surfaces of fluoroethylene (C2H3F).
    Barbatti M; Aquino AJ; Lischka H
    J Phys Chem A; 2005 Jun; 109(23):5168-75. PubMed ID: 16833872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the connectivity of seams of conical intersection: seam curvature.
    Yarkony DR
    J Chem Phys; 2005 Nov; 123(20):204101. PubMed ID: 16351234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the characterization of three state conical intersections: a quasianalytic theory using a group homomorphism approach.
    Schuurman MS; Yarkony DR
    J Chem Phys; 2006 Mar; 124(12):124109. PubMed ID: 16599664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodissociation of methane: exploring potential energy surfaces.
    van Harrevelt R
    J Chem Phys; 2006 Sep; 125(12):124302. PubMed ID: 17014169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond the van der Lugt/Oosterhoff model: when the conical intersection seam and the S1 minimum energy path do not cross.
    Nenov A; Kölle P; Robb MA; de Vivie-Riedle R
    J Org Chem; 2010 Jan; 75(1):123-9. PubMed ID: 19954144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the characterization of three-state conical intersections using a group homomorphism approach: the two-state degeneracy spaces.
    Schuurman MS; Yarkony DR
    J Phys Chem B; 2006 Sep; 110(38):19031-9. PubMed ID: 16986900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fluorescence mechanism of 5-methyl-2-pyrimidinone: an ab initio study of a fluorescent pyrimidine analog.
    Kistler KA; Matsika S
    Photochem Photobiol; 2007; 83(3):611-24. PubMed ID: 16780393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conical intersections in triplet excited states of methylene from the anti-Hermitian contracted Schrödinger equation.
    Snyder JW; Rothman AE; Foley JJ; Mazziotti DA
    J Chem Phys; 2010 Apr; 132(15):154109. PubMed ID: 20423170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Searching for conical intersections of potential energy surfaces with the ONIOM method: application to previtamin D.
    Bearpark MJ; Larkin SM; Vreven T
    J Phys Chem A; 2008 Aug; 112(31):7286-95. PubMed ID: 18636693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.