These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16164349)

  • 1. Thermally activated escape rate for the Brownian motion of a fixed axis rotator in an asymmetrical double-well potential for all values of the dissipation.
    Kalmykov YP; Titov SV; Coffey WT
    J Chem Phys; 2005 Sep; 123(9):94503. PubMed ID: 16164349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally activated escape rate for the Brownian motion of a fixed axis rotator in a double well potential for all values of the dissipation.
    Coffey WT; Kalmykov YP; Titov SV
    J Chem Phys; 2004 May; 120(19):9199-211. PubMed ID: 15267857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally activated escape rate for a Brownian particle in a double-well potential for all values of the dissipation.
    Kalmykov YP; Coffey WT; Titov SV
    J Chem Phys; 2006 Jan; 124(2):024107. PubMed ID: 16422571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally activated escape rate for a Brownian particle in a tilted periodic potential for all values of the dissipation.
    Coffey WT; Kalmykov YP; Titov SV; Mulligan BP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061101. PubMed ID: 16906803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial effects in the orientational relaxation of rodlike molecules in a uniaxial potential.
    Kalmykov YP; Titov SV; Coffey WT
    J Chem Phys; 2009 Feb; 130(6):064110. PubMed ID: 19222270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpolation formula between very low and intermediate-to-high damping Kramers escape rates for single-domain ferromagnetic particles.
    Déjardin PM; Crothers DS; Coffey WT; McCarthy DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):021102. PubMed ID: 11308463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the smallest nonvanishing eigenvalue of the fokker-planck equation for the brownian motion in a potential. II. The matrix continued fraction approach.
    Kalmykov YP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):227-36. PubMed ID: 11088456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution of the master equation for Wigner's quasiprobability distribution in phase space for the Brownian motion of a particle in a double well potential.
    Coffey WT; Kalmykov YP; Titov SV
    J Chem Phys; 2007 Aug; 127(7):074502. PubMed ID: 17718615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum effects in the Brownian motion of a particle in a double well potential in the overdamped limit.
    Coffey WT; Kalmykov YP; Titov SV; Cleary L
    J Chem Phys; 2009 Aug; 131(8):084101. PubMed ID: 19725602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the smallest nonvanishing eigenvalue of the fokker-planck equation for brownian motion in a potential: the continued fraction approach.
    Kalmykov YP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6320-9. PubMed ID: 11088307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction rate theory: what it was, where is it today, and where is it going?
    Pollak E; Talkner P
    Chaos; 2005 Jun; 15(2):26116. PubMed ID: 16035918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial and bias effects in the rotational brownian motion of rodlike molecules in a uniaxial potential.
    Kalmykov YP; Titov SV; Coffey WT
    J Chem Phys; 2011 Jan; 134(4):044530. PubMed ID: 21280771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wigner function approach to the quantum Brownian motion of a particle in a potential.
    Coffey WT; Kalmykov YP; Titov SV; Mulligan BP
    Phys Chem Chem Phys; 2007 Jul; 9(26):3361-82. PubMed ID: 17664961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-similar renormalization approach to barrier crossing processes.
    Drozdov AN; Hayashi S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3804-13. PubMed ID: 11970215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Velocity dependence of friction and Kramers relaxation rates.
    Gelin MF; Kosov DS
    J Chem Phys; 2007 Jun; 126(24):244501. PubMed ID: 17614558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvements to Kramers turnover theory.
    Pollak E; Ankerhold J
    J Chem Phys; 2013 Apr; 138(16):164116. PubMed ID: 23635120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiclassical master equation in Wigners phase space applied to Brownian motion in a periodic potential.
    Coffey WT; Kalmykov YP; Titov SV; Mulligan BP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041117. PubMed ID: 17500875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion in a bistable system: The eigenvalue spectrum of the Fokker-Planck operator and Kramers' reaction rate theory.
    Zhan Y; Shizgal BD
    Phys Rev E; 2019 Apr; 99(4-1):042101. PubMed ID: 31108642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A heuristic model of damped quantum rotation effects in nuclear magnetic resonance spectra.
    Szymański S
    J Chem Phys; 2011 Jan; 134(4):044509. PubMed ID: 21280750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brownian particles in an external field: Asymptotic distribution functions and mean square displacement.
    Ferrari L
    J Chem Phys; 2010 Jan; 132(4):044907. PubMed ID: 20113066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.