These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 16164408)

  • 1. Symmetry at the active site of the ribosome: structural and functional implications.
    Agmon I; Bashan A; Zarivach R; Yonath A
    Biol Chem; 2005 Sep; 386(9):833-44. PubMed ID: 16164408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosomal tolerance and peptide bond formation.
    Yonath A
    Biol Chem; 2003; 384(10-11):1411-9. PubMed ID: 14669983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal crystallography: peptide bond formation and its inhibition.
    Bashan A; Zarivach R; Schluenzen F; Agmon I; Harms J; Auerbach T; Baram D; Berisio R; Bartels H; Hansen HA; Fucini P; Wilson D; Peretz M; Kessler M; Yonath A
    Biopolymers; 2003 Sep; 70(1):19-41. PubMed ID: 12925991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics.
    Yonath A; Bashan A
    Annu Rev Microbiol; 2004; 58():233-51. PubMed ID: 15487937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction.
    Schmeing TM; Huang KS; Kitchen DE; Strobel SA; Steitz TA
    Mol Cell; 2005 Nov; 20(3):437-48. PubMed ID: 16285925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects.
    Baram D; Yonath A
    FEBS Lett; 2005 Feb; 579(4):948-54. PubMed ID: 15680980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How ribosomes make peptide bonds.
    Rodnina MV; Beringer M; Wintermeyer W
    Trends Biochem Sci; 2007 Jan; 32(1):20-6. PubMed ID: 17157507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome.
    Yu H; Chan YL; Wool IG
    J Mol Biol; 2009 Feb; 386(3):802-13. PubMed ID: 19154738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosome crystallography: catalysis and evolution of peptide-bond formation, nascent chain elongation and its co-translational folding.
    Bashan A; Yonath A
    Biochem Soc Trans; 2005 Jun; 33(Pt 3):488-92. PubMed ID: 15916549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal crystallography: a flexible nucleotide anchoring tRNA translocation, facilitates peptide-bond formation, chirality discrimination and antibiotics synergism.
    Agmon I; Amit M; Auerbach T; Bashan A; Baram D; Bartels H; Berisio R; Greenberg I; Harms J; Hansen HA; Kessler M; Pyetan E; Schluenzen F; Sittner A; Yonath A; Zarivach R
    FEBS Lett; 2004 Jun; 567(1):20-6. PubMed ID: 15165888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mechanism of peptide bond formation on the ribosome--controversions].
    Bakowska-Zywicka K; Tyczewska A; Twardowski T
    Postepy Biochem; 2006; 52(2):166-72. PubMed ID: 17078506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Peptidyltransferase center of ribosomes. Structure and relationship to other ribosomal functions].
    Kukhanova MK; KraevskiÄ­ AA; Gottikh BP
    Mol Biol (Mosk); 1977; 11(6):1357-76. PubMed ID: 36555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2'-OH at A2451 of 23S rRNA.
    Erlacher MD; Lang K; Wotzel B; Rieder R; Micura R; Polacek N
    J Am Chem Soc; 2006 Apr; 128(13):4453-9. PubMed ID: 16569023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ribosomal peptidyl transferase.
    Beringer M; Rodnina MV
    Mol Cell; 2007 May; 26(3):311-21. PubMed ID: 17499039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of peptide bond formation on the ribosome.
    Rodnina MV; Beringer M; Wintermeyer W
    Q Rev Biophys; 2006 Aug; 39(3):203-25. PubMed ID: 16893477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide.
    Polacek N; Gaynor M; Yassin A; Mankin AS
    Nature; 2001 May; 411(6836):498-501. PubMed ID: 11373685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding.
    Fulle S; Gohlke H
    J Mol Biol; 2009 Mar; 387(2):502-17. PubMed ID: 19356596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological implications of the ribosome's stunning stereochemistry.
    Zimmerman E; Yonath A
    Chembiochem; 2009 Jan; 10(1):63-72. PubMed ID: 19089882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlating ribosome function with high-resolution structures.
    Bashan A; Yonath A
    Trends Microbiol; 2008 Jul; 16(7):326-35. PubMed ID: 18547810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.