BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16164414)

  • 1. Lysine 3 acetylation regulates the phosphorylation of yeast 6-phosphofructo-2-kinase under hypo-osmotic stress.
    Dihazi H; Kessler R; Müller GA; Eschrich K
    Biol Chem; 2005 Sep; 386(9):895-900. PubMed ID: 16164414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-induced stimulation of the Ras-cAMP pathway in yeast leads to multiple phosphorylations and activation of 6-phosphofructo-2-kinase.
    Dihazi H; Kessler R; Eschrich K
    Biochemistry; 2003 May; 42(20):6275-82. PubMed ID: 12755632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins.
    Polevoda B; Sherman F
    J Mol Biol; 2003 Jan; 325(4):595-622. PubMed ID: 12507466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence requirements for Nalpha-terminal acetylation of yeast proteins by NatA.
    Perrot M; Massoni A; Boucherie H
    Yeast; 2008 Jul; 25(7):513-27. PubMed ID: 18615858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step purification of recombinant yeast 6-phosphofructo-2-kinase after the identification of contaminants by MALDI-TOF MS.
    Dihazi H; Kessler R; Eschrich K
    Protein Expr Purif; 2001 Feb; 21(1):201-9. PubMed ID: 11162407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress.
    Dihazi H; Kessler R; Eschrich K
    J Biol Chem; 2004 Jun; 279(23):23961-8. PubMed ID: 15037628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.
    Helsens K; Van Damme P; Degroeve S; Martens L; Arnesen T; Vandekerckhove J; Gevaert K
    J Proteome Res; 2011 Aug; 10(8):3578-89. PubMed ID: 21619078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sic1 is phosphorylated by CK2 on Ser201 in budding yeast cells.
    Coccetti P; Zinzalla V; Tedeschi G; Russo GL; Fantinato S; Marin O; Pinna LA; Vanoni M; Alberghina L
    Biochem Biophys Res Commun; 2006 Aug; 346(3):786-93. PubMed ID: 16777072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The essential function of Swc4p - a protein shared by two chromatin-modifying complexes of the yeast Saccharomyces cerevisiae - resides within its N-terminal part.
    Miciałkiewicz A; Chełstowska A
    Acta Biochim Pol; 2008; 55(3):603-12. PubMed ID: 18726008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N(α)-Acetylation of yeast ribosomal proteins and its effect on protein synthesis.
    Kamita M; Kimura Y; Ino Y; Kamp RM; Polevoda B; Sherman F; Hirano H
    J Proteomics; 2011 Apr; 74(4):431-41. PubMed ID: 21184851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress.
    Kim I; Yun H; Jin I
    J Microbiol Biotechnol; 2007 Feb; 17(2):207-17. PubMed ID: 18051751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co- and post-translational modifications of the 26S proteasome in yeast.
    Kikuchi J; Iwafune Y; Akiyama T; Okayama A; Nakamura H; Arakawa N; Kimura Y; Hirano H
    Proteomics; 2010 Aug; 10(15):2769-79. PubMed ID: 20486117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes.
    Polevoda B; Brown S; Cardillo TS; Rigby S; Sherman F
    J Cell Biochem; 2008 Feb; 103(2):492-508. PubMed ID: 17541948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-Terminal protein modifications in an insect cell-free protein synthesis system and their identification by mass spectrometry.
    Suzuki T; Ito M; Ezure T; Shikata M; Ando E; Utsumi T; Tsunasawa S; Nishimura O
    Proteomics; 2006 Aug; 6(16):4486-95. PubMed ID: 16835852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of a highly acetylated protein using a curved-field reflectron mass spectrometer.
    Wang D; Thompson P; Cole PA; Cotter RJ
    Proteomics; 2005 Jun; 5(9):2288-96. PubMed ID: 15887180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composition and function of the eukaryotic N-terminal acetyltransferase subunits.
    Polevoda B; Sherman F
    Biochem Biophys Res Commun; 2003 Aug; 308(1):1-11. PubMed ID: 12890471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysine acetylation targets protein complexes and co-regulates major cellular functions.
    Choudhary C; Kumar C; Gnad F; Nielsen ML; Rehman M; Walther TC; Olsen JV; Mann M
    Science; 2009 Aug; 325(5942):834-40. PubMed ID: 19608861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis on heat stress-induced hyperphosphorylation of stathmin at serine 37 in Jurkat cells by means of two-dimensional gel electrophoresis and tandem mass spectrometry.
    Nakamura K; Zhang X; Kuramitsu Y; Fujimoto M; Yuan X; Akada J; Aoshima-Okuda M; Mitani N; Itoh Y; Katoh T; Morita Y; Nagasaka Y; Yamazaki Y; Kuriki T; Sobel A
    J Chromatogr A; 2006 Feb; 1106(1-2):181-9. PubMed ID: 16427064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation and inactivation of yeast 6-phosphofructo-2-kinase contribute to the regulation of glycolysis under hypotonic stress.
    Dihazi H; Kessler R; Eschrich K
    Biochemistry; 2001 Dec; 40(48):14669-78. PubMed ID: 11724581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stress-induced Tfs1p requires NatB-mediated acetylation to inhibit carboxypeptidase Y and to regulate the protein kinase A pathway.
    Caesar R; Blomberg A
    J Biol Chem; 2004 Sep; 279(37):38532-43. PubMed ID: 15229224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.