BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 16165023)

  • 1. Signal optimisation in cw-laser crossed-beam photothermal spectrometry: influence of the chopping frequency, sample size and flow rate.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):2849-55. PubMed ID: 16165023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the optimum optical design for pulsed-laser crossed-beam thermal lens spectrometry in infinite and finite samples.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):863-72. PubMed ID: 15036097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-wave-laser versus pulsed-laser excitation for crossed-beam photothermal detection in small volume applications: comparative features.
    Georges J
    Appl Spectrosc; 2005 Sep; 59(9):1103-8. PubMed ID: 18028608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsed-laser crossed-beam thermal lens spectrometry for detection in a microchannel: influence of the size of the excitation beam waist.
    Ghaleb KA; Georges J
    Appl Spectrosc; 2004 Sep; 58(9):1116-21. PubMed ID: 15479529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed-laser mode-mismatched crossed-beam thermal lens spectrometry within a small capillary tube: effect of flow rate and beam offset on the photothermal signal.
    Chanlon S; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Jun; 58(8):1607-13. PubMed ID: 12166732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of instrumental parameters of a near-field thermal-lens detector for capillary electrophoresis.
    Proskurnin MA; Bendrysheva SN; Ragozina N; Heissler S; Faubel W; Pyell U
    Appl Spectrosc; 2005 Dec; 59(12):1470-9. PubMed ID: 16390585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Optical Configuration of Crossed-Beam Photothermal Lens Spectrometer Operating at High Flow Velocities and Its Application for Cysteine Determination in Human Serum and Saliva.
    Yoosefian J; Alizadeh N
    Anal Chem; 2018 Jul; 90(13):8227-8233. PubMed ID: 29869876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermal technique using individual cantilevers for quality monitoring in thin film devices.
    Gotoh T
    Rev Sci Instrum; 2009 Jul; 80(7):074902. PubMed ID: 19655972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photothermal lens detection of gold nanoparticles: theory and experiments.
    Brusnichkin AV; Nedosekin DA; Proskurnin MA; Zharov VP
    Appl Spectrosc; 2007 Nov; 61(11):1191-201. PubMed ID: 18028698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermooptical detection in microchips: from macro- to micro-scale with enhanced analytical parameters.
    Smirnova A; Proskurnin MA; Bendrysheva SN; Nedosekin DA; Hibara A; Kitamori T
    Electrophoresis; 2008 Jul; 29(13):2741-53. PubMed ID: 18546176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photothermal spectrometry for detection in miniaturized systems: relevant features, strategies and recent applications.
    Ghaleb KA; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Oct; 60(12):2793-801. PubMed ID: 15350914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous coaxial thermal lens spectroscopy and retro-reflected beam interference detection for capillary electrophoresis.
    Xiong B; Miao X; Zhou X; Deng Y; Zhou P; Hu J
    J Chromatogr A; 2008 Oct; 1209(1-2):260-6. PubMed ID: 18829035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limitations arising from two-photon absorption of solvent in pulsed-laser thermal lens detection: determination of the two-photon absorption coefficient of ethanol at 266 nm.
    Abbas Ghaleb K; Georges J
    Appl Spectrosc; 2006 Jan; 60(1):86-8. PubMed ID: 16454917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: experiment.
    Zhang X; Li B
    Rev Sci Instrum; 2015 Feb; 86(2):024902. PubMed ID: 25725872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules.
    Hiki S; Mawatari K; Hibara A; Tokeshi M; Kitamori T
    Anal Chem; 2006 Apr; 78(8):2859-63. PubMed ID: 16615803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved thermal mirror technique with top-hat cw laser excitation.
    Astrath FB; Astrath NG; Shen J; Zhou J; Malacarne LC; Pedreira PR; Baesso ML
    Opt Express; 2008 Aug; 16(16):12214-9. PubMed ID: 18679498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical imaging using microline laser ablation: performance comparison of Gaussian and flat top lasers.
    Mateo MP; CabalĂ­n LM; Laserna JJ
    Appl Spectrosc; 2003 Mar; 57(3):343-8. PubMed ID: 14658628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cw-laser thermal lens spectrometry in binary mixtures of water and organic solvents: composition dependence of the steady-state and time-resolved signals.
    Arnaud N; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):1817-23. PubMed ID: 15248955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of light-absorbing layers at inner capillary surface by cw excitation crossed-beam thermal-lens spectrometry.
    Nedosekin DA; Faubel W; Proskurnin MA; Pyell U
    Talanta; 2009 May; 78(3):682-90. PubMed ID: 19269412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in thermal lens spectrometry and its applications in microscale analytical devices.
    Liu M; Franko M
    Crit Rev Anal Chem; 2014; 44(4):328-53. PubMed ID: 25391720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.