These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 16166157)

  • 1. ATP sensitivity of ATP-sensitive K+ channels: role of the gamma phosphate group of ATP and the R50 residue of mouse Kir6.2.
    John SA; Weiss JN; Ribalet B
    J Physiol; 2005 Nov; 568(Pt 3):931-40. PubMed ID: 16166157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism for ATP-dependent closure of the K+ channel Kir6.2.
    John SA; Weiss JN; Xie LH; Ribalet B
    J Physiol; 2003 Oct; 552(Pt 1):23-34. PubMed ID: 12860923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis for Kir6.2 channel inhibition by adenine nucleotides.
    Ribalet B; John SA; Weiss JN
    Biophys J; 2003 Jan; 84(1):266-76. PubMed ID: 12524280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the ATP-sensitive K channel Kir6.2 by ATP and PIP(2).
    Ribalet B; John SA; Xie LH; Weiss JN
    J Mol Cell Cardiol; 2005 Jul; 39(1):71-7. PubMed ID: 15978904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-sensitive K+ channels: regulation of bursting by the sulphonylurea receptor, PIP2 and regions of Kir6.2.
    Ribalet B; John SA; Xie LH; Weiss JN
    J Physiol; 2006 Mar; 571(Pt 2):303-17. PubMed ID: 16373383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of lysine 185 in the kir6.2 subunit of the ATP-sensitive channel in channel inhibition by ATP.
    Reimann F; Ryder TJ; Tucker SJ; Ashcroft FM
    J Physiol; 1999 Nov; 520 Pt 3(Pt 3):661-9. PubMed ID: 10545134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of the N-terminus of Kir6.2 in the inhibition of the KATP channel by ATP.
    Proks P; Gribble FM; Adhikari R; Tucker SJ; Ashcroft FM
    J Physiol; 1999 Jan; 514 ( Pt 1)(Pt 1):19-25. PubMed ID: 9831713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of the activity of ATP-sensitive potassium channels by ion pairs formed between adjacent Kir6.2 subunits.
    Lin YW; Jia T; Weinsoft AM; Shyng SL
    J Gen Physiol; 2003 Aug; 122(2):225-37. PubMed ID: 12885877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of residues contributing to the ATP binding site of Kir6.2.
    Trapp S; Haider S; Jones P; Sansom MS; Ashcroft FM
    EMBO J; 2003 Jun; 22(12):2903-12. PubMed ID: 12805206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A threonine residue (Thr71) at the intracellular end of the M1 helix plays a critical role in the gating of Kir6.2 channels by intracellular ATP and protons.
    Cui N; Wu J; Xu H; Wang R; Rojas A; Piao H; Mao J; Abdulkadir L; Li L; Jiang C
    J Membr Biol; 2003 Mar; 192(2):111-22. PubMed ID: 12682799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional modulation of the ATP-sensitive potassium channel by extracellular signal-regulated kinase-mediated phosphorylation.
    Lin YF; Chai Y
    Neuroscience; 2008 Mar; 152(2):371-80. PubMed ID: 18280666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit.
    Antcliff JF; Haider S; Proks P; Sansom MS; Ashcroft FM
    EMBO J; 2005 Jan; 24(2):229-39. PubMed ID: 15650751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gating of G protein-sensitive inwardly rectifying K+ channels through phosphatidylinositol 4,5-bisphosphate.
    Logothetis DE; Zhang H
    J Physiol; 1999 Nov; 520 Pt 3(Pt 3):630. PubMed ID: 10545130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects.
    Shimomura K; Girard CA; Proks P; Nazim J; Lippiat JD; Cerutti F; Lorini R; Ellard S; Hattersley AT; Barbetti F; Ashcroft FM
    Diabetes; 2006 Jun; 55(6):1705-12. PubMed ID: 16731833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-dependent interaction of the cytosolic domains of the inwardly rectifying K+ channel Kir6.2 revealed by fluorescence resonance energy transfer.
    Tsuboi T; Lippiat JD; Ashcroft FM; Rutter GA
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):76-81. PubMed ID: 14681552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphatidylinositol 4,5-bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels. A tale of an active and a silent PIP2 site in the N terminus.
    Schulze D; Krauter T; Fritzenschaft H; Soom M; Baukrowitz T
    J Biol Chem; 2003 Mar; 278(12):10500-5. PubMed ID: 12514171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gating of the ATP-sensitive K+ channel by a pore-lining phenylalanine residue.
    Rojas A; Wu J; Wang R; Jiang C
    Biochim Biophys Acta; 2007 Jan; 1768(1):39-51. PubMed ID: 16970907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the PIP2-binding site on Kir6.2 by molecular modelling and functional analysis.
    Haider S; Tarasov AI; Craig TJ; Sansom MS; Ashcroft FM
    EMBO J; 2007 Aug; 26(16):3749-59. PubMed ID: 17673911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of the ATP/phosphatidylinositol 4,5 diphosphate-binding site to a 39-amino acid region of the carboxyl terminus of the ATP-regulated K+ channel Kir1.1.
    Dong K; Tang L; MacGregor GG; Hebert SC
    J Biol Chem; 2002 Dec; 277(51):49366-73. PubMed ID: 12381730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protons activate homomeric Kir6.2 channels by selective suppression of the long and intermediate closures.
    Wu J; Xu H; Yang Z; Wang Y; Mao J; Jiang C
    J Membr Biol; 2002 Nov; 190(2):105-16. PubMed ID: 12474075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.