BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 16166396)

  • 1. A study on the role of the dorsal striatum and the nucleus accumbens in allocentric and egocentric spatial memory consolidation.
    De Leonibus E; Oliverio A; Mele A
    Learn Mem; 2005; 12(5):491-503. PubMed ID: 16166396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA and AMPA antagonist infusions into the ventral striatum impair different steps of spatial information processing in a nonassociative task in mice.
    Roullet P; Sargolini F; Oliverio A; Mele A
    J Neurosci; 2001 Mar; 21(6):2143-9. PubMed ID: 11245698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological evidence of the role of dorsal striatum in spatial memory consolidation in mice.
    De Leonibus E; Lafenetre P; Oliverio A; Mele A
    Behav Neurosci; 2003 Aug; 117(4):685-94. PubMed ID: 12931954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential involvement of NMDA and AMPA receptors within the nucleus accumbens in consolidation of information necessary for place navigation and guidance strategy of mice.
    Sargolini F; Florian C; Oliverio A; Mele A; Roullet P
    Learn Mem; 2003; 10(4):285-92. PubMed ID: 12888547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of the rat dorsal striatum impairs performance in spatial tasks and alters hippocampal theta in the freely moving rat.
    Gengler S; Mallot HA; Hölscher C
    Behav Brain Res; 2005 Oct; 164(1):73-82. PubMed ID: 16039727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of egocentric and allocentric age-dependent spatial learning in the beagle dog.
    Christie LA; Studzinski CM; Araujo JA; Leung CS; Ikeda-Douglas CJ; Head E; Cotman CW; Milgram NW
    Prog Neuropsychopharmacol Biol Psychiatry; 2005 Mar; 29(3):361-9. PubMed ID: 15795044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of intra-accumbens NMDA and AMPA receptor antagonists on short-term spatial learning in the Morris water maze task.
    Ferretti V; Sargolini F; Oliverio A; Mele A; Roullet P
    Behav Brain Res; 2007 Apr; 179(1):43-9. PubMed ID: 17289166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial deficits in a mouse model of Parkinson disease.
    De Leonibus E; Pascucci T; Lopez S; Oliverio A; Amalric M; Mele A
    Psychopharmacology (Berl); 2007 Nov; 194(4):517-25. PubMed ID: 17619858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bilateral destruction of the ventrolateral orbital cortex produces allocentric but not egocentric spatial deficits in rats.
    Corwin JV; Fussinger M; Meyer RC; King VR; Reep RL
    Behav Brain Res; 1994 Mar; 61(1):79-86. PubMed ID: 8031498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of NMDA receptors in the dorsolateral striatum to egocentric response learning.
    Palencia CA; Ragozzino ME
    Behav Neurosci; 2005 Aug; 119(4):953-60. PubMed ID: 16187823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Ca(V)2.1-mediated NMDA receptor signaling in the nucleus accumbens in spatial short-term memory.
    Takahashi E; Niimi K; Itakura C
    Behav Brain Res; 2011 Apr; 218(2):353-6. PubMed ID: 21168448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of intra-accumbens focal administrations of glutamate antagonists on object recognition memory in mice.
    Sargolini F; Roullet P; Oliverio A; Mele A
    Behav Brain Res; 2003 Jan; 138(2):153-63. PubMed ID: 12527446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotor activity, exploration and spatial alternation learning in rats with striatal injections of kainic acid.
    Pisa M; Sanberg PR; Fibiger HC
    Physiol Behav; 1980 Jan; 24(1):11-9. PubMed ID: 7384233
    [No Abstract]   [Full Text] [Related]  

  • 14. The effects of overtraining in the Morris water maze on allocentric and egocentric learning strategies in rats.
    Kealy J; Diviney M; Kehoe E; McGonagle V; O'Shea A; Harvey D; Commins S
    Behav Brain Res; 2008 Oct; 192(2):259-63. PubMed ID: 18514924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-methyl-D-aspartate receptors in the nucleus accumbens are involved in detection of spatial novelty in mice.
    Usiello A; Sargolini F; Roullet P; Ammassari-Teule M; Passino E; Oliverio A; Mele A
    Psychopharmacology (Berl); 1998 May; 137(2):175-83. PubMed ID: 9630004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caudate nucleus and memory for egocentric localization.
    Cook D; Kesner RP
    Behav Neural Biol; 1988 May; 49(3):332-43. PubMed ID: 3408445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estradiol and striatal dopamine receptor antagonism influence memory system bias in the female rat.
    Quinlan MG; Almey A; Caissie M; LaChappelle I; Radiotis G; Brake WG
    Neurobiol Learn Mem; 2013 Nov; 106():221-9. PubMed ID: 24036396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human brain dynamics accompanying use of egocentric and allocentric reference frames during navigation.
    Gramann K; Onton J; Riccobon D; Mueller HJ; Bardins S; Makeig S
    J Cogn Neurosci; 2010 Dec; 22(12):2836-49. PubMed ID: 19925183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disrupted allocentric but preserved egocentric spatial learning in transgenic mice with impaired glucocorticoid receptor function.
    Steckler T; Weis C; Sauvage M; Mederer A; Holsboer F
    Behav Brain Res; 1999 Apr; 100(1-2):77-89. PubMed ID: 10212055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of lesions to the glutamatergic afferents to the nucleus accumbens in the modulation of reactivity to spatial and non-spatial novelty in mice.
    Sargolini F; Roullet P; Oliverio A; Mele A
    Neuroscience; 1999; 93(3):855-67. PubMed ID: 10473251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.