These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16166512)

  • 1. Ultrahigh strength in nanocrystalline materials under shock loading.
    Bringa EM; Caro A; Wang Y; Victoria M; McNaney JM; Remington BA; Smith RF; Torralva BR; Van Swygenhoven H
    Science; 2005 Sep; 309(5742):1838-41. PubMed ID: 16166512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A maximum in the strength of nanocrystalline copper.
    Schiøtz J; Jacobsen KW
    Science; 2003 Sep; 301(5638):1357-9. PubMed ID: 12958354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2002 Sep; 1(1):45-8. PubMed ID: 12618848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grain boundary-mediated plasticity in nanocrystalline nickel.
    Shan Z; Stach EA; Wiezorek JM; Knapp JA; Follstaedt DM; Mao SX
    Science; 2004 Jul; 305(5684):654-7. PubMed ID: 15286368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental observations of stress-driven grain boundary migration.
    Rupert TJ; Gianola DS; Gan Y; Hemker KJ
    Science; 2009 Dec; 326(5960):1686-90. PubMed ID: 20019286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation twinning in nanocrystalline aluminum.
    Chen M; Ma E; Hemker KJ; Sheng H; Wang Y; Cheng X
    Science; 2003 May; 300(5623):1275-7. PubMed ID: 12714676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A crossover in the mechanical response of nanocrystalline ceramics.
    Szlufarska I; Nakano A; Vashishta P
    Science; 2005 Aug; 309(5736):911-4. PubMed ID: 16081730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic plasticity and failure of high-purity alumina under shock loading.
    Chen MW; McCauley JW; Dandekar DP; Bourne NK
    Nat Mater; 2006 Aug; 5(8):614-8. PubMed ID: 16845418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stacking fault energies and slip in nanocrystalline metals.
    Van Swygenhoven H; Derlet PM; Frøseth AG
    Nat Mater; 2004 Jun; 3(6):399-403. PubMed ID: 15156199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation.
    Zhang L; Lu C; Tieu K; Zhao X; Pei L
    Nanoscale; 2015 Apr; 7(16):7224-33. PubMed ID: 25811909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation on creep-ratcheting behavior of columnar nanocrystalline aluminum.
    Babu PN; Pal S
    J Mol Graph Model; 2023 Jan; 118():108376. PubMed ID: 36413920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competing grain-boundary- and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum.
    Li X; Wei Y; Yang W; Gao H
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16108-13. PubMed ID: 19805266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dislocation dynamics in nanocrystalline nickel.
    Shan ZW; Wiezorek JM; Stach EA; Follstaedt DM; Knapp JA; Mao SX
    Phys Rev Lett; 2007 Mar; 98(9):095502. PubMed ID: 17359167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size effect on the deformation mechanisms of nanocrystalline platinum thin films.
    Shu X; Kong D; Lu Y; Long H; Sun S; Sha X; Zhou H; Chen Y; Mao S; Liu Y
    Sci Rep; 2017 Oct; 7(1):13264. PubMed ID: 29038576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films.
    Rajagopalan J; Han JH; Saif MT
    Science; 2007 Mar; 315(5820):1831-4. PubMed ID: 17395826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dislocation multi-junctions and strain hardening.
    Bulatov VV; Hsiung LL; Tang M; Arsenlis A; Bartelt MC; Cai W; Florando JN; Hiratani M; Rhee M; Hommes G; Pierce TG; de la Rubia TD
    Nature; 2006 Apr; 440(7088):1174-8. PubMed ID: 16641992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide.
    Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q
    Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrahigh stress and strain in hierarchically structured hollow nanoparticles.
    Shan ZW; Adesso G; Cabot A; Sherburne MP; Asif SA; Warren OL; Chrzan DC; Minor AM; Alivisatos AP
    Nat Mater; 2008 Dec; 7(12):947-52. PubMed ID: 18931673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation Behavior of Nanocrystalline Body-Centered Cubic Iron with Segregated, Foreign Interstitial: A Molecular Dynamics Study.
    AlMotasem AT; Posselt M; Polcar T
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shock response of single crystal and nanocrystalline pentaerythritol tetranitrate: Implications to hotspot formation in energetic materials.
    Cai Y; Zhao FP; An Q; Wu HA; Goddard WA; Luo SN
    J Chem Phys; 2013 Oct; 139(16):164704. PubMed ID: 24182061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.