BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 16166543)

  • 1. A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study.
    Yu EW; Aires JR; McDermott G; Nikaido H
    J Bacteriol; 2005 Oct; 187(19):6804-15. PubMed ID: 16166543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump.
    Yu EW; McDermott G; Zgurskaya HI; Nikaido H; Koshland DE
    Science; 2003 May; 300(5621):976-80. PubMed ID: 12738864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-directed disulfide cross-linking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli.
    Takatsuka Y; Nikaido H
    J Bacteriol; 2007 Dec; 189(23):8677-84. PubMed ID: 17905989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives.
    Sjuts H; Vargiu AV; Kwasny SM; Nguyen ST; Kim HS; Ding X; Ornik AR; Ruggerone P; Bowlin TL; Nikaido H; Pos KM; Opperman TJ
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3509-14. PubMed ID: 26976576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane topology of a multidrug efflux transporter, AcrB, in Escherichia coli.
    Fujihira E; Tamura N; Yamaguchi A
    J Biochem; 2002 Jan; 131(1):145-51. PubMed ID: 11754746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide cross-linking.
    Tamura N; Murakami S; Oyama Y; Ishiguro M; Yamaguchi A
    Biochemistry; 2005 Aug; 44(33):11115-21. PubMed ID: 16101295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversal of the Drug Binding Pocket Defects of the AcrB Multidrug Efflux Pump Protein of Escherichia coli.
    Soparkar K; Kinana AD; Weeks JW; Morrison KD; Nikaido H; Misra R
    J Bacteriol; 2015 Oct; 197(20):3255-64. PubMed ID: 26240069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of site-directed mutations in multidrug efflux pump AcrB examined by quantitative efflux assays.
    Kinana AD; Vargiu AV; Nikaido H
    Biochem Biophys Res Commun; 2016 Nov; 480(4):552-557. PubMed ID: 27789287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chimeric analysis of AcrA function reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump.
    Elkins CA; Nikaido H
    J Bacteriol; 2003 Sep; 185(18):5349-56. PubMed ID: 12949086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway.
    Su CC; Li M; Gu R; Takatsuka Y; McDermott G; Nikaido H; Yu EW
    J Bacteriol; 2006 Oct; 188(20):7290-6. PubMed ID: 17015668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism.
    Takatsuka Y; Nikaido H
    J Bacteriol; 2009 Mar; 191(6):1729-37. PubMed ID: 19060146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB.
    Bohnert JA; Schuster S; Seeger MA; Fähnrich E; Pos KM; Kern WV
    J Bacteriol; 2008 Dec; 190(24):8225-9. PubMed ID: 18849422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random mutagenesis of the multidrug transporter AcrB from Escherichia coli for identification of putative target residues of efflux pump inhibitors.
    Schuster S; Kohler S; Buck A; Dambacher C; König A; Bohnert JA; Kern WV
    Antimicrob Agents Chemother; 2014 Nov; 58(11):6870-8. PubMed ID: 25182653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate path in the AcrB multidrug efflux pump of Escherichia coli.
    Husain F; Nikaido H
    Mol Microbiol; 2010 Oct; 78(2):320-30. PubMed ID: 20804453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of RND multidrug efflux pumps.
    Nikaido H; Takatsuka Y
    Biochim Biophys Acta; 2009 May; 1794(5):769-81. PubMed ID: 19026770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a series of 2-napthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance.
    Wang Y; Mowla R; Guo L; Ogunniyi AD; Rahman T; De Barros Lopes MA; Ma S; Venter H
    Bioorg Med Chem Lett; 2017 Feb; 27(4):733-739. PubMed ID: 28129976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallographic analysis of AcrB.
    Pos KM; Schiefner A; Seeger MA; Diederichs K
    FEBS Lett; 2004 Apr; 564(3):333-9. PubMed ID: 15111118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system.
    Touzé T; Eswaran J; Bokma E; Koronakis E; Hughes C; Koronakis V
    Mol Microbiol; 2004 Jul; 53(2):697-706. PubMed ID: 15228545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of a conserved residue R780 in Escherichia coli multidrug transporter AcrB.
    Yu L; Lu W; Ye C; Wang Z; Zhong M; Chai Q; Sheetz M; Wei Y
    Biochemistry; 2013 Oct; 52(39):6790-6. PubMed ID: 24007302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perturbed structural dynamics underlie inhibition and altered efflux of the multidrug resistance pump AcrB.
    Reading E; Ahdash Z; Fais C; Ricci V; Wang-Kan X; Grimsey E; Stone J; Malloci G; Lau AM; Findlay H; Konijnenberg A; Booth PJ; Ruggerone P; Vargiu AV; Piddock LJV; Politis A
    Nat Commun; 2020 Nov; 11(1):5565. PubMed ID: 33149158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.