These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 16166652)
1. Human DNA polymerase iota promotes replication through a ring-closed minor-groove adduct that adopts a syn conformation in DNA. Wolfle WT; Johnson RE; Minko IG; Lloyd RS; Prakash S; Prakash L Mol Cell Biol; 2005 Oct; 25(19):8748-54. PubMed ID: 16166652 [TBL] [Abstract][Full Text] [Related]
2. Genetic control of predominantly error-free replication through an acrolein-derived minor-groove DNA adduct. Yoon JH; Hodge RP; Hackfeld LC; Park J; Roy Choudhury J; Prakash S; Prakash L J Biol Chem; 2018 Feb; 293(8):2949-2958. PubMed ID: 29330301 [TBL] [Abstract][Full Text] [Related]
3. Replication past a trans-4-hydroxynonenal minor-groove adduct by the sequential action of human DNA polymerases iota and kappa. Wolfle WT; Johnson RE; Minko IG; Lloyd RS; Prakash S; Prakash L Mol Cell Biol; 2006 Jan; 26(1):381-6. PubMed ID: 16354708 [TBL] [Abstract][Full Text] [Related]
4. Efficient and error-free replication past a minor-groove DNA adduct by the sequential action of human DNA polymerases iota and kappa. Washington MT; Minko IG; Johnson RE; Wolfle WT; Harris TM; Lloyd RS; Prakash S; Prakash L Mol Cell Biol; 2004 Jul; 24(13):5687-93. PubMed ID: 15199127 [TBL] [Abstract][Full Text] [Related]
5. Translesion synthesis past acrolein-derived DNA adduct, gamma -hydroxypropanodeoxyguanosine, by yeast and human DNA polymerase eta. Minko IG; Washington MT; Kanuri M; Prakash L; Prakash S; Lloyd RS J Biol Chem; 2003 Jan; 278(2):784-90. PubMed ID: 12401796 [TBL] [Abstract][Full Text] [Related]
6. Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ. Kasiviswanathan R; Minko IG; Lloyd RS; Copeland WC J Biol Chem; 2013 May; 288(20):14247-14255. PubMed ID: 23543747 [TBL] [Abstract][Full Text] [Related]
7. Role of hoogsteen edge hydrogen bonding at template purines in nucleotide incorporation by human DNA polymerase iota. Johnson RE; Haracska L; Prakash L; Prakash S Mol Cell Biol; 2006 Sep; 26(17):6435-41. PubMed ID: 16914729 [TBL] [Abstract][Full Text] [Related]
8. Accommodation of an N-(deoxyguanosin-8-yl)-2-acetylaminofluorene adduct in the active site of human DNA polymerase iota: Hoogsteen or Watson-Crick base pairing? Donny-Clark K; Shapiro R; Broyde S Biochemistry; 2009 Jan; 48(1):7-18. PubMed ID: 19072536 [TBL] [Abstract][Full Text] [Related]
9. Comparative evaluation of the bioreactivity and mutagenic spectra of acrolein-derived alpha-HOPdG and gamma-HOPdG regioisomeric deoxyguanosine adducts. Sanchez AM; Minko IG; Kurtz AJ; Kanuri M; Moriya M; Lloyd RS Chem Res Toxicol; 2003 Aug; 16(8):1019-28. PubMed ID: 12924930 [TBL] [Abstract][Full Text] [Related]
10. Lesion bypass of N2-ethylguanine by human DNA polymerase iota. Pence MG; Blans P; Zink CN; Hollis T; Fishbein JC; Perrino FW J Biol Chem; 2009 Jan; 284(3):1732-40. PubMed ID: 18984581 [TBL] [Abstract][Full Text] [Related]
11. Efficient and error-free replication past a minor-groove N2-guanine adduct by the sequential action of yeast Rev1 and DNA polymerase zeta. Washington MT; Minko IG; Johnson RE; Haracska L; Harris TM; Lloyd RS; Prakash S; Prakash L Mol Cell Biol; 2004 Aug; 24(16):6900-6. PubMed ID: 15282292 [TBL] [Abstract][Full Text] [Related]
12. Solution structures of aminofluorene [AF]-stacked conformers of the syn [AF]-C8-dG adduct positioned opposite dC or dA at a template-primer junction. Gu Z; Gorin A; Hingerty BE; Broyde S; Patel DJ Biochemistry; 1999 Aug; 38(33):10855-70. PubMed ID: 10451382 [TBL] [Abstract][Full Text] [Related]
13. Chemistry and biology of DNA containing 1,N(2)-deoxyguanosine adducts of the alpha,beta-unsaturated aldehydes acrolein, crotonaldehyde, and 4-hydroxynonenal. Minko IG; Kozekov ID; Harris TM; Rizzo CJ; Lloyd RS; Stone MP Chem Res Toxicol; 2009 May; 22(5):759-78. PubMed ID: 19397281 [TBL] [Abstract][Full Text] [Related]
14. Polymerization past the N2-isopropylguanine and the N6-isopropyladenine DNA lesions with the translesion synthesis DNA polymerases eta and iota and the replicative DNA polymerase alpha. Perrino FW; Harvey S; Blans P; Gelhaus S; Lacourse WR; Fishbein JC Chem Res Toxicol; 2005 Sep; 18(9):1451-61. PubMed ID: 16167838 [TBL] [Abstract][Full Text] [Related]
15. Kinetic analysis of base-pairing preference for nucleotide incorporation opposite template pyrimidines by human DNA polymerase iota. Choi JY; Lim S; Eoff RL; Guengerich FP J Mol Biol; 2009 Jun; 389(2):264-74. PubMed ID: 19376129 [TBL] [Abstract][Full Text] [Related]
16. Kinetic evidence for inefficient and error-prone bypass across bulky N2-guanine DNA adducts by human DNA polymerase iota. Choi JY; Guengerich FP J Biol Chem; 2006 May; 281(18):12315-24. PubMed ID: 16527824 [TBL] [Abstract][Full Text] [Related]
17. Protein-template-directed synthesis across an acrolein-derived DNA adduct by yeast Rev1 DNA polymerase. Nair DT; Johnson RE; Prakash L; Prakash S; Aggarwal AK Structure; 2008 Feb; 16(2):239-45. PubMed ID: 18275815 [TBL] [Abstract][Full Text] [Related]
18. Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing. Nair DT; Johnson RE; Prakash S; Prakash L; Aggarwal AK Nature; 2004 Jul; 430(6997):377-80. PubMed ID: 15254543 [TBL] [Abstract][Full Text] [Related]
19. Unique active site promotes error-free replication opposite an 8-oxo-guanine lesion by human DNA polymerase iota. Kirouac KN; Ling H Proc Natl Acad Sci U S A; 2011 Feb; 108(8):3210-5. PubMed ID: 21300901 [TBL] [Abstract][Full Text] [Related]
20. Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine. Yoon JH; Roy Choudhury J; Park J; Prakash S; Prakash L J Biol Chem; 2017 Nov; 292(45):18682-18688. PubMed ID: 28939775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]