These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 16167101)
1. Apatite formation on poly(2-hydroxyethyl methacrylate)-silica hybrids prepared by sol-gel process. Costa RO; Pereira MM; Lameiras FS; Vasconcelos WL J Mater Sci Mater Med; 2005 Oct; 16(10):927-32. PubMed ID: 16167101 [TBL] [Abstract][Full Text] [Related]
2. Bioactivity in silica/poly(γ-glutamic acid) sol-gel hybrids through calcium chelation. Valliant EM; Romer F; Wang D; McPhail DS; Smith ME; Hanna JV; Jones JR Acta Biomater; 2013 Aug; 9(8):7662-71. PubMed ID: 23632373 [TBL] [Abstract][Full Text] [Related]
3. Effect of solid/solution ratio on apatite formation from CaSiO3 ceramics in simulated body fluid. Iimori Y; Kameshima Y; Yasumori A; Okada K J Mater Sci Mater Med; 2004 Nov; 15(11):1247-53. PubMed ID: 15880935 [TBL] [Abstract][Full Text] [Related]
4. Growth of a bonelike apatite on chitosan microparticles after a calcium silicate treatment. Leonor IB; Baran ET; Kawashita M; Reis RL; Kokubo T; Nakamura T Acta Biomater; 2008 Sep; 4(5):1349-59. PubMed ID: 18400572 [TBL] [Abstract][Full Text] [Related]
5. In-situ sol-gel synthesis and characterization of bioactive pHEMA/SiO2 blend hybrids. Silvestri B; Luciani G; Costantini A; Tescione F; Branda F; Pezzella A J Biomed Mater Res B Appl Biomater; 2009 May; 89(2):369-378. PubMed ID: 18823022 [TBL] [Abstract][Full Text] [Related]
6. Comparative study of apatite formation on CaSiO3 ceramics in simulated body fluids with different carbonate concentrations. Iimori Y; Kameshima Y; Okada K; Hayashi S J Mater Sci Mater Med; 2005 Jan; 16(1):73-9. PubMed ID: 15754147 [TBL] [Abstract][Full Text] [Related]
7. Effect of calcium salt content in the poly(epsilon-caprolactone)/silica nanocomposite on the nucleation and growth behavior of apatite layer. Rhee SH J Biomed Mater Res A; 2003 Dec; 67(4):1131-8. PubMed ID: 14624498 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of apatite formation on pure titanium treated with alkaline solution. Wang CX; Zhou X; Wang M Biomed Mater Eng; 2004; 14(1):5-11. PubMed ID: 14757948 [TBL] [Abstract][Full Text] [Related]
9. Formation mechanism of biomedical apatite coatings on porous titania layer. Huang P; Xu K; Han Y J Mater Sci Mater Med; 2007 Mar; 18(3):457-63. PubMed ID: 17334696 [TBL] [Abstract][Full Text] [Related]
10. In vitro apatite formation on organic-inorganic hybrids in the CaO-SiO(2)-PO (5/2)-poly(tetramethylene oxide) system. Koh MY; Kamitakahara M; Kim IY; Kikuta K; Ohtsuki C J Mater Sci Mater Med; 2010 Feb; 21(2):385-92. PubMed ID: 19756965 [TBL] [Abstract][Full Text] [Related]
11. Sol-gel synthesis of a multifunctional, hierarchically porous silica/apatite composite. Andersson J; Areva S; Spliethoff B; Lindén M Biomaterials; 2005 Dec; 26(34):6827-35. PubMed ID: 15993485 [TBL] [Abstract][Full Text] [Related]
12. Low-temperature deposition of rutile film on biomaterials substrates and its ability to induce apatite deposition in vitro. Wu JM; Liu JF; Hayakawa S; Tsuru K; Osaka A J Mater Sci Mater Med; 2007 Aug; 18(8):1529-36. PubMed ID: 17410409 [TBL] [Abstract][Full Text] [Related]
13. In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Yu S; Hariram KP; Kumar R; Cheang P; Aik KK Biomaterials; 2005 May; 26(15):2343-52. PubMed ID: 15585237 [TBL] [Abstract][Full Text] [Related]
14. Apatite-forming ability and mechanical properties of PTMO-modified CaO-SiO2 hybrids prepared by sol-gel processing: effect of CaO and PTMO contents. Miyata N; Fuke K; Chen Q; Kawashita M; Kokubo T; Nakamura T Biomaterials; 2002 Jul; 23(14):3033-40. PubMed ID: 12069346 [TBL] [Abstract][Full Text] [Related]
15. Biodegradability of poly (2-hydroxyethyl methacrylate) in the presence of the J774.2 macrophage cell line. Mabilleau G; Moreau MF; Filmon R; Baslé MF; Chappard D Biomaterials; 2004 Sep; 25(21):5155-62. PubMed ID: 15109839 [TBL] [Abstract][Full Text] [Related]
16. Apatite-forming ability of vinylphosphonic acid-based copolymer in simulated body fluid: effects of phosphate group content. Hamai R; Shirosaki Y; Miyazaki T J Mater Sci Mater Med; 2016 Oct; 27(10):152. PubMed ID: 27585911 [TBL] [Abstract][Full Text] [Related]
17. Ultrastructural evaluation of in vitro mineralized calcium phosphate phase on surface phosphorylated poly(hydroxy ethyl methacrylate-co-methyl methacrylate). Sailaja GS; Ramesh P; Varma HK J Mater Sci Mater Med; 2010 Apr; 21(4):1183-93. PubMed ID: 20099010 [TBL] [Abstract][Full Text] [Related]
18. Apatite formation on silica gel in simulated body fluid: its dependence on structures of silica gels prepared in different media. Cho SB; Nakanishi K; Kokubo T; Soga N; Ohtsuki C; Nakamura T J Biomed Mater Res; 1996; 33(3):145-51. PubMed ID: 8864886 [TBL] [Abstract][Full Text] [Related]
19. Apatite formation on PDMS-modified CaO-SiO2-TiO2 hybrids prepared by sol-gel process. Chen Q; Miyaji F; Kokubo T; Nakamura T Biomaterials; 1999 Jun; 20(12):1127-32. PubMed ID: 10382828 [TBL] [Abstract][Full Text] [Related]
20. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Kim HM; Himeno T; Kokubo T; Nakamura T Biomaterials; 2005 Jul; 26(21):4366-73. PubMed ID: 15701365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]