These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 16167114)
1. Primary osteoblast cell response to sol-gel derived bioactive glass foams. Valerio P; Guimaráes MH; Pereira MM; Leite MF; Goes AM J Mater Sci Mater Med; 2005 Sep; 16(9):851-6. PubMed ID: 16167114 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds. Chen QZ; Thouas GA Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791 [TBL] [Abstract][Full Text] [Related]
3. Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. Bosetti M; Zanardi L; Hench L; Cannas M J Biomed Mater Res A; 2003 Jan; 64(1):189-95. PubMed ID: 12483713 [TBL] [Abstract][Full Text] [Related]
4. Influence of recovering collagen with bioactive glass on osteoblast behavior. Andrade AL; Valério P; de Goes AM; de Fátima Leite M; Domingues RZ J Biomed Mater Res B Appl Biomater; 2007 Nov; 83(2):481-9. PubMed ID: 17443669 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
6. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Gough JE; Jones JR; Hench LL Biomaterials; 2004 May; 25(11):2039-46. PubMed ID: 14741618 [TBL] [Abstract][Full Text] [Related]
7. Bioactive sol-gel foams for tissue repair. Sepulveda P; Jones JR; Hench LL J Biomed Mater Res; 2002 Feb; 59(2):340-8. PubMed ID: 11745571 [TBL] [Abstract][Full Text] [Related]
8. Time- and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Bielby RC; Christodoulou IS; Pryce RS; Radford WJ; Hench LL; Polak JM Tissue Eng; 2004; 10(7-8):1018-26. PubMed ID: 15363159 [TBL] [Abstract][Full Text] [Related]
9. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Wu C; Miron R; Sculean A; Kaskel S; Doert T; Schulze R; Zhang Y Biomaterials; 2011 Oct; 32(29):7068-78. PubMed ID: 21704367 [TBL] [Abstract][Full Text] [Related]
10. Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method. Pereira MM; Jones JR; Orefice RL; Hench LL J Mater Sci Mater Med; 2005 Nov; 16(11):1045-50. PubMed ID: 16388385 [TBL] [Abstract][Full Text] [Related]
11. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds. Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528 [TBL] [Abstract][Full Text] [Related]
12. Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58S bioactive sol-gel glass. Bielby RC; Pryce RS; Hench LL; Polak JM Tissue Eng; 2005; 11(3-4):479-88. PubMed ID: 15869426 [TBL] [Abstract][Full Text] [Related]
13. Behaviour of fetal rat osteoblasts cultured in vitro on bioactive glass and nonreactive glasses. Vrouwenvelder WC; Groot CG; de Groot K Biomaterials; 1992; 13(6):382-92. PubMed ID: 1610963 [TBL] [Abstract][Full Text] [Related]
14. Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Isaac J; Nohra J; Lao J; Jallot E; Nedelec JM; Berdal A; Sautier JM Eur Cell Mater; 2011 Feb; 21():130-43. PubMed ID: 21305476 [TBL] [Abstract][Full Text] [Related]
15. Growth and differentiation of osteoblastic cells on 13-93 bioactive glass fibers and scaffolds. Brown RF; Day DE; Day TE; Jung S; Rahaman MN; Fu Q Acta Biomater; 2008 Mar; 4(2):387-96. PubMed ID: 17768097 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. de Oliveira AA; de Souza DA; Dias LL; de Carvalho SM; Mansur HS; de Magalhães Pereira M Biomed Mater; 2013 Apr; 8(2):025011. PubMed ID: 23502808 [TBL] [Abstract][Full Text] [Related]
17. Biological performance of hydroxyapatite-biopolymer foams: in vitro cell response. Cicuéndez M; Izquierdo-Barba I; Sánchez-Salcedo S; Vila M; Vallet-Regí M Acta Biomater; 2012 Feb; 8(2):802-10. PubMed ID: 21971417 [TBL] [Abstract][Full Text] [Related]
18. In vitro response of human osteoblasts to multi-step sol-gel derived bioactive glass nanoparticles for bone tissue engineering. Fan JP; Kalia P; Di Silvio L; Huang J Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():206-14. PubMed ID: 24433905 [TBL] [Abstract][Full Text] [Related]
19. Calcium phosphate-chitosan composite scaffolds for bone tissue engineering. Zhang Y; Ni M; Zhang M; Ratner B Tissue Eng; 2003 Apr; 9(2):337-45. PubMed ID: 12740096 [TBL] [Abstract][Full Text] [Related]
20. Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. Christodoulou I; Buttery LD; Saravanapavan P; Tai G; Hench LL; Polak JM J Biomed Mater Res B Appl Biomater; 2005 Jul; 74(1):529-37. PubMed ID: 15889438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]