These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16167760)

  • 1. Recent advances in studies on structure and symbiosis-related function of rhizobial K-antigens and lipopolysaccharides.
    Becker A; Fraysse N; Sharypova L
    Mol Plant Microbe Interact; 2005 Sep; 18(9):899-905. PubMed ID: 16167760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipopolysaccharides in Rhizobium-legume symbioses.
    Carlson RW; Forsberg LS; Kannenberg EL
    Subcell Biochem; 2010; 53():339-86. PubMed ID: 20593275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis.
    Fauvart M; Michiels J
    FEMS Microbiol Lett; 2008 Aug; 285(1):1-9. PubMed ID: 18616593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pods and Nods: a new look at symbiotic nitrogen fixing bacteria.
    Brewin NJ
    Biologist (London); 2002 Jun; 49(3):113-7. PubMed ID: 12097713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipochitooligosaccharides and legume Rhizobium symbiosis--a new concept.
    Chimote V; Kashyap LR
    Indian J Exp Biol; 2001 May; 39(5):401-9. PubMed ID: 11510121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Reactive oxygen and nitrogen species in legume-rhizobial symbiosis: a review].
    Glian'ko AK; Vasil'eva GG
    Prikl Biokhim Mikrobiol; 2010; 46(1):21-8. PubMed ID: 20198912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coevolution in Rhizobium-legume symbiosis?
    Martínez-Romero E
    DNA Cell Biol; 2009 Aug; 28(8):361-70. PubMed ID: 19485766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in Rhizobium-legume symbiosis.
    Randhawa GS; Shubha ; Singh NK; Kumar A; Bhalla A
    Indian J Exp Biol; 2003 Oct; 41(10):1184-97. PubMed ID: 15242284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of a K-antigen capsular polysaccharide essential for normal symbiotic infection in Rhizobium sp. NGR234: deletion of the rkpMNO locus prevents synthesis of 5,7-diacetamido-3,5,7,9-tetradeoxy-non-2-ulosonic acid.
    Le Quéré AJ; Deakin WJ; Schmeisser C; Carlson RW; Streit WR; Broughton WJ; Forsberg LS
    J Biol Chem; 2006 Sep; 281(39):28981-92. PubMed ID: 16772294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhizobia utilize pathogen-like effector proteins during symbiosis.
    Kambara K; Ardissone S; Kobayashi H; Saad MM; Schumpp O; Broughton WJ; Deakin WJ
    Mol Microbiol; 2009 Jan; 71(1):92-106. PubMed ID: 19019163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometric analysis of lipo-chitin oligosaccharides--signal molecules mediating the host-specific legume-rhizobium symbiosis.
    van der Drift KM; Olsthoorn MM; Brüll LP; Blok-Tip L; Thomas-Oates JE
    Mass Spectrom Rev; 1998; 17(2):75-95. PubMed ID: 9951410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of PHB metabolism in the symbiosis of rhizobia with legumes.
    Trainer MA; Charles TC
    Appl Microbiol Biotechnol; 2006 Jul; 71(4):377-86. PubMed ID: 16703322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symbiotic conditions induce structural modifications of Sinorhizobium sp. NGR234 surface polysaccharides.
    Fraysse N; Jabbouri S; Treilhou M; Couderc F; Poinsot V
    Glycobiology; 2002 Nov; 12(11):741-8. PubMed ID: 12460942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NodMutDB: a database for genes and mutants involved in symbiosis.
    Mao C; Qiu J; Wang C; Charles TC; Sobral BW
    Bioinformatics; 2005 Jun; 21(12):2927-9. PubMed ID: 15817696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp. strain NGR234-legume symbioses.
    Broughton WJ; Hanin M; Relic B; Kopciñska J; Golinowski W; Simsek S; Ojanen-Reuhs T; Reuhs B; Marie C; Kobayashi H; Bordogna B; Le Quéré A; Jabbouri S; Fellay R; Perret X; Deakin WJ
    J Bacteriol; 2006 May; 188(10):3654-63. PubMed ID: 16672619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes.
    Silva C; Vinuesa P; Eguiarte LE; Souza V; Martínez-Romero E
    Mol Ecol; 2005 Nov; 14(13):4033-50. PubMed ID: 16262857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of the K antigens from Rhizobium fredii USDA257: evidence for a common structural motif, with strain-specific variation, in the capsular polysaccharides of Rhizobium spp.
    Forsberg LS; Reuhs BL
    J Bacteriol; 1997 Sep; 179(17):5366-71. PubMed ID: 9286989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?
    Masson-Boivin C; Giraud E; Perret X; Batut J
    Trends Microbiol; 2009 Oct; 17(10):458-66. PubMed ID: 19766492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Genetic resources of nodule bacteria].
    Rumiantseva ML
    Genetika; 2009 Sep; 45(9):1157-72. PubMed ID: 19824536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Rhizobial networks for symbiosis with legumes].
    Minamisawa K; Saeki K; Sato S; Shimoda Y
    Tanpakushitsu Kakusan Koso; 2006 Aug; 51(9):1044-50. PubMed ID: 16895234
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.