These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
615 related articles for article (PubMed ID: 16167767)
1. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. López-Lara IM; Gao JL; Soto MJ; Solares-Pérez A; Weissenmayer B; Sohlenkamp C; Verroios GP; Thomas-Oates J; Geiger O Mol Plant Microbe Interact; 2005 Sep; 18(9):973-82. PubMed ID: 16167767 [TBL] [Abstract][Full Text] [Related]
2. Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions. López-Lara IM; Sohlenkamp C; Geiger O Mol Plant Microbe Interact; 2003 Jul; 16(7):567-79. PubMed ID: 12848422 [TBL] [Abstract][Full Text] [Related]
3. Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids. Gao JL; Weissenmayer B; Taylor AM; Thomas-Oates J; López-Lara IM; Geiger O Mol Microbiol; 2004 Sep; 53(6):1757-70. PubMed ID: 15341653 [TBL] [Abstract][Full Text] [Related]
4. Role of trehalose transport and utilization in Sinorhizobium meliloti--alfalfa interactions. Jensen JB; Ampomah OY; Darrah R; Peters NK; Bhuvaneswari TV Mol Plant Microbe Interact; 2005 Jul; 18(7):694-702. PubMed ID: 16042015 [TBL] [Abstract][Full Text] [Related]
5. Sinorhizobium meliloti mutants deficient in phosphatidylserine decarboxylase accumulate phosphatidylserine and are strongly affected during symbiosis with alfalfa. Vences-Guzmán MA; Geiger O; Sohlenkamp C J Bacteriol; 2008 Oct; 190(20):6846-56. PubMed ID: 18708506 [TBL] [Abstract][Full Text] [Related]
6. Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Barsch A; Tellström V; Patschkowski T; Küster H; Niehaus K Mol Plant Microbe Interact; 2006 Sep; 19(9):998-1013. PubMed ID: 16941904 [TBL] [Abstract][Full Text] [Related]
7. Mutation in the ntrR gene, a member of the vap gene family, increases the symbiotic efficiency of Sinorhizobium meliloti. Oláh B; Kiss E; Györgypál Z; Borzi J; Cinege G; Csanádi G; Batut J; Kondorosi A; Dusha I Mol Plant Microbe Interact; 2001 Jul; 14(7):887-94. PubMed ID: 11437262 [TBL] [Abstract][Full Text] [Related]
8. Disruption of a gene essential for sulfoquinovosyldiacylglycerol biosynthesis in Sinorhizobium meliloti has no detectable effect on root nodule symbiosis. Weissenmayer B; Geiger O; Benning C Mol Plant Microbe Interact; 2000 Jun; 13(6):666-72. PubMed ID: 10830266 [TBL] [Abstract][Full Text] [Related]
9. Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation. Zavaleta-Pastor M; Sohlenkamp C; Gao JL; Guan Z; Zaheer R; Finan TM; Raetz CR; López-Lara IM; Geiger O Proc Natl Acad Sci U S A; 2010 Jan; 107(1):302-7. PubMed ID: 20018679 [TBL] [Abstract][Full Text] [Related]
10. Contributions of Sinorhizobium meliloti Transcriptional Regulator DksA to Bacterial Growth and Efficient Symbiosis with Medicago sativa. Wippel K; Long SR J Bacteriol; 2016 May; 198(9):1374-83. PubMed ID: 26883825 [TBL] [Abstract][Full Text] [Related]
11. Sinorhizobium meliloti nfe (nodulation formation efficiency) genes exhibit temporal and spatial expression patterns similar to those of genes involved in symbiotic nitrogen fixation. García-Rodríguez FM; Toro N Mol Plant Microbe Interact; 2000 Jun; 13(6):583-91. PubMed ID: 10830257 [TBL] [Abstract][Full Text] [Related]
12. Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti. Maclean AM; White CE; Fowler JE; Finan TM Mol Plant Microbe Interact; 2009 Sep; 22(9):1116-27. PubMed ID: 19656046 [TBL] [Abstract][Full Text] [Related]
14. The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Kiss E; Huguet T; Poinsot V; Batut J Mol Plant Microbe Interact; 2004 Mar; 17(3):235-44. PubMed ID: 15000390 [TBL] [Abstract][Full Text] [Related]
15. BioS, a biotin-induced, stationary-phase, and possible LysR-type regulator in Sinorhizobium meliloti. Heinz EB; Phillips DA; Streit WR Mol Plant Microbe Interact; 1999 Sep; 12(9):803-12. PubMed ID: 10494632 [TBL] [Abstract][Full Text] [Related]
16. Probing the Sinorhizobium meliloti-alfalfa symbiosis using temperature-sensitive and impaired-function citrate synthase mutants. Grzemski W; Akowski JP; Kahn ML Mol Plant Microbe Interact; 2005 Feb; 18(2):134-41. PubMed ID: 15720082 [TBL] [Abstract][Full Text] [Related]
17. GuaB activity is required in Rhizobium tropici during the early stages of nodulation of determinate nodules but is dispensable for the Sinorhizobium meliloti-alfalfa symbiotic interaction. Collavino M; Riccillo PM; Grasso DH; Crespi M; Aguilar M Mol Plant Microbe Interact; 2005 Jul; 18(7):742-50. PubMed ID: 16042020 [TBL] [Abstract][Full Text] [Related]
18. Sinorhizobium meliloti 1021 loss-of-function deletion mutation in chvI and its phenotypic characteristics. Wang C; Kemp J; Da Fonseca IO; Equi RC; Sheng X; Charles TC; Sobral BW Mol Plant Microbe Interact; 2010 Feb; 23(2):153-60. PubMed ID: 20064059 [TBL] [Abstract][Full Text] [Related]
19. Sinorhizobium meliloti nifA mutant induces different gene expression profile from wild type in Alfalfa nodules. Gong ZY; He ZS; Zhu JB; Yu GQ; Zou HS Cell Res; 2006 Oct; 16(10):818-29. PubMed ID: 17001343 [TBL] [Abstract][Full Text] [Related]
20. Involvement of the Sinorhizobium meliloti leuA gene in activation of nodulation genes by NodD1 and luteolin. Sanjuán-Pinilla JM; Muñoz S; Nogales J; Olivares J; Sanjuán J Arch Microbiol; 2002 Jul; 178(1):36-44. PubMed ID: 12070767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]