These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16167827)

  • 1. Time-dependent evolution of adducts formed between deoxynucleosides and a model quinone methide.
    Weinert EE; Frankenfield KN; Rokita SE
    Chem Res Toxicol; 2005 Sep; 18(9):1364-70. PubMed ID: 16167827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative quenching of quinone methide adducts reveals transient products of reversible alkylation in duplex DNA.
    McCrane MP; Hutchinson MA; Ad O; Rokita SE
    Chem Res Toxicol; 2014 Jul; 27(7):1282-93. PubMed ID: 24896651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkylation of 2'-deoxynucleosides and DNA by quinone methides derived from 2,6-di-tert-butyl-4-methylphenol.
    Lewis MA; Yoerg DG; Bolton JL; Thompson JA
    Chem Res Toxicol; 1996 Dec; 9(8):1368-74. PubMed ID: 8951242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective N1-alkylation of 2'-deoxyguanosine with a quinolinyl quinone methide.
    Zhou Q; Xu T; Mangrum JB
    Chem Res Toxicol; 2007 Aug; 20(8):1069-74. PubMed ID: 17630703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping a labile adduct formed between an ortho-quinone methide and 2'-deoxycytidine.
    McCrane MP; Weinert EE; Lin Y; Mazzola EP; Lam YF; Scholl PF; Rokita SE
    Org Lett; 2011 Mar; 13(5):1186-9. PubMed ID: 21306149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic versus kinetic products of DNA alkylation as modeled by reaction of deoxyadenosine.
    Veldhuyzen WF; Shallop AJ; Jones RA; Rokita SE
    J Am Chem Soc; 2001 Nov; 123(45):11126-32. PubMed ID: 11697955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivity of purine alkylation by a quinone methide. Kinetic or thermodynamic control?
    Freccero M; Gandolfi R; Sarzi-Amadè M
    J Org Chem; 2003 Aug; 68(16):6411-23. PubMed ID: 12895079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Alkylation of C-Rich Bulge Motifs in Nucleic Acids by Quinone Methide Derivatives.
    Lönnberg T; Hutchinson M; Rokita S
    Chemistry; 2015 Sep; 21(37):13127-36. PubMed ID: 26220692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling H-bonding and solvent effects in the alkylation of pyrimidine bases by a prototype quinone methide: a DFT study.
    Freccero M; Di Valentin C; Sarzi-Amadè M;
    J Am Chem Soc; 2003 Mar; 125(12):3544-53. PubMed ID: 12643716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA alkylation with N-methylquinolinium quinone methide to N2-dG adducts resulting in extensive stops in primer extension with DNA polymerases and subsequent suppression of GFP expression in A549 cells.
    Zhou Q; Qu Y; Mangrum JB; Wang X
    Chem Res Toxicol; 2011 Mar; 24(3):402-11. PubMed ID: 21306116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transient product of DNA alkylation can be stabilized by binding localization.
    Veldhuyzen WF; Pande P; Rokita SE
    J Am Chem Soc; 2003 Nov; 125(46):14005-13. PubMed ID: 14611237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conjugation of a hairpin pyrrole-imidazole polyamide to a quinone methide for control of DNA cross-linking.
    Kumar D; Veldhuyzen WF; Zhou Q; Rokita SE
    Bioconjug Chem; 2004; 15(4):915-22. PubMed ID: 15264882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2'-Deoxyguanosine reacts with a model quinone methide at multiple sites.
    Veldhuyzen WF; Lam YF; Rokita SE
    Chem Res Toxicol; 2001 Sep; 14(9):1345-51. PubMed ID: 11559052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migratory ability of quinone methide-generating acridine conjugates in DNA.
    Deeyaa BD; Rokita SE
    Org Biomol Chem; 2020 Feb; 18(8):1671-1678. PubMed ID: 32051993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substituents on quinone methides strongly modulate formation and stability of their nucleophilic adducts.
    Weinert EE; Dondi R; Colloredo-Melz S; Frankenfield KN; Mitchell CH; Freccero M; Rokita SE
    J Am Chem Soc; 2006 Sep; 128(36):11940-7. PubMed ID: 16953635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Products of the direct reaction of the diazonium ion of a metabolite of the carcinogen N-nitrosomorpholine with purines of nucleosides and DNA.
    Zink CN; Soissons N; Fishbein JC
    Chem Res Toxicol; 2010 Jul; 23(7):1223-33. PubMed ID: 20443589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducible alkylation of DNA by a quinone methide-peptide nucleic acid conjugate.
    Liu Y; Rokita SE
    Biochemistry; 2012 Feb; 51(5):1020-7. PubMed ID: 22243337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactivation of the selective estrogen receptor modulator acolbifene to quinone methides.
    Liu J; Liu H; van Breemen RB; Thatcher GR; Bolton JL
    Chem Res Toxicol; 2005 Feb; 18(2):174-82. PubMed ID: 15720121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. o-Quinone methide as alkylating agent of nitrogen, oxygen, and sulfur nucleophiles. The role of H-bonding and solvent effects on the reactivity through a DFT computational study.
    Di Valentin C; Freccero M; Zanaletti R; Sarzi-Amadè M
    J Am Chem Soc; 2001 Aug; 123(34):8366-77. PubMed ID: 11516286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinants of selectivity in alkylation of nucleosides and DNA by secondary diazonium ions: evidence for, and consequences of, a preassociation mechanism.
    Blans P; Fishbein JC
    Chem Res Toxicol; 2004 Nov; 17(11):1531-9. PubMed ID: 15540951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.