BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16167842)

  • 1. Analysis of protein covalent modification by xenobiotics using a covert oxidatively activated tag: raloxifene proof-of-principle study.
    Liu J; Li Q; Yang X; van Breemen RB; Bolton JL; Thatcher GR
    Chem Res Toxicol; 2005 Sep; 18(9):1485-96. PubMed ID: 16167842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative methods for analysis of protein covalent modification by electrophilic quinoids formed from xenobiotics.
    Yu B; Qin Z; Wijewickrama GT; Edirisinghe P; Bolton JL; Thatcher GR
    Bioconjug Chem; 2009 Apr; 20(4):728-41. PubMed ID: 19301905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uterine peroxidase-catalyzed formation of diquinone methides from the selective estrogen receptor modulators raloxifene and desmethylated arzoxifene.
    Liu H; Qin Z; Thatcher GR; Bolton JL
    Chem Res Toxicol; 2007 Nov; 20(11):1676-84. PubMed ID: 17630709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome P450 3A4-mediated bioactivation of raloxifene: irreversible enzyme inhibition and thiol adduct formation.
    Chen Q; Ngui JS; Doss GA; Wang RW; Cai X; DiNinno FP; Blizzard TA; Hammond ML; Stearns RA; Evans DC; Baillie TA; Tang W
    Chem Res Toxicol; 2002 Jul; 15(7):907-14. PubMed ID: 12119000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactivation of coumarin in rat olfactory mucosal microsomes: Detection of protein covalent binding and identification of reactive intermediates through analysis of glutathione adducts.
    Zhuo X; Zhao W; Zheng J; Humphreys WG; Shu YZ; Zhu M
    Chem Biol Interact; 2009 Oct; 181(2):227-35. PubMed ID: 19576871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent inactivation of P450 3A4 by raloxifene: identification of Cys239 as the site of apoprotein alkylation.
    Baer BR; Wienkers LC; Rock DA
    Chem Res Toxicol; 2007 Jun; 20(6):954-64. PubMed ID: 17497897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural modulation of oxidative metabolism in design of improved benzothiophene selective estrogen receptor modulators.
    Qin Z; Kastrati I; Ashgodom RT; Lantvit DD; Overk CR; Choi Y; van Breemen RB; Bolton JL; Thatcher GR
    Drug Metab Dispos; 2009 Jan; 37(1):161-9. PubMed ID: 18936111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of intestinal glucuronidation in limiting hepatic exposure and bioactivation of raloxifene in humans and rats.
    Dalvie D; Kang P; Zientek M; Xiang C; Zhou S; Obach RS
    Chem Res Toxicol; 2008 Dec; 21(12):2260-71. PubMed ID: 19548350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of raloxifene to quinoids: potential toxic pathways via a diquinone methide and o-quinones.
    Yu L; Liu H; Li W; Zhang F; Luckie C; van Breemen RB; Thatcher GR; Bolton JL
    Chem Res Toxicol; 2004 Jul; 17(7):879-88. PubMed ID: 15257612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactivation of phenytoin by human cytochrome P450: characterization of the mechanism and targets of covalent adduct formation.
    Munns AJ; De Voss JJ; Hooper WD; Dickinson RG; Gillam EM
    Chem Res Toxicol; 1997 Sep; 10(9):1049-58. PubMed ID: 9305589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH-dependent covalent binding of [3H]paroxetine to human liver microsomes and S-9 fractions: identification of an electrophilic quinone metabolite of paroxetine.
    Zhao SX; Dalvie DK; Kelly JM; Soglia JR; Frederick KS; Smith EB; Obach RS; Kalgutkar AS
    Chem Res Toxicol; 2007 Nov; 20(11):1649-57. PubMed ID: 17907785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrosation, nitration, and autoxidation of the selective estrogen receptor modulator raloxifene by nitric oxide, peroxynitrite, and reactive nitrogen/oxygen species.
    Toader V; Xu X; Nicolescu A; Yu L; Bolton JL; Thatcher GR
    Chem Res Toxicol; 2003 Oct; 16(10):1264-76. PubMed ID: 14565768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometric characterization of protein adducts of multiple P450-dependent reactive intermediates of diclofenac to human glutathione-S-transferase P1-1.
    Boerma JS; Dragovic S; Vermeulen NP; Commandeur JN
    Chem Res Toxicol; 2012 Nov; 25(11):2532-41. PubMed ID: 22998212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro biotransformation and genotoxicity of the drinking water disinfection byproduct bromodichloromethane: DNA binding mediated by glutathione transferase theta 1-1.
    Ross MK; Pegram RA
    Toxicol Appl Pharmacol; 2004 Mar; 195(2):166-81. PubMed ID: 14998683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactivation of isothiazoles: minimizing the risk of potential toxicity in drug discovery.
    Teffera Y; Choquette D; Liu J; Colletti AE; Hollis LS; Lin MH; Zhao Z
    Chem Res Toxicol; 2010 Nov; 23(11):1743-52. PubMed ID: 20825217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of microsomal glutathione S-transferase and inhibition of cytochrome P450 1A1 activity as a model system for detecting protein alkylation by thiourea-containing compounds in rat liver microsomes.
    Onderwater RC; Commandeur JN; Menge WM; Vermeulen NP
    Chem Res Toxicol; 1999 May; 12(5):396-402. PubMed ID: 10328749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-electron oxidation of diclofenac by human cytochrome P450s as a potential bioactivation mechanism for formation of 2'-(glutathion-S-yl)-deschloro-diclofenac.
    Boerma JS; Vermeulen NP; Commandeur JN
    Chem Biol Interact; 2014 Jan; 207():32-40. PubMed ID: 24246759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hyperthyroidism on the in vitro metabolism and covalent binding of 1,1-dichloroethylene in rat liver microsomes.
    Gunasena GH; Kanz MF
    J Toxicol Environ Health; 1997 Oct; 52(2):169-88. PubMed ID: 9310148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome p450 architecture and cysteine nucleophile placement impact raloxifene-mediated mechanism-based inactivation.
    VandenBrink BM; Davis JA; Pearson JT; Foti RS; Wienkers LC; Rock DA
    Mol Pharmacol; 2012 Nov; 82(5):835-42. PubMed ID: 22859722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significantly Different Covalent Binding of Oxidative Metabolites, Acyl Glucuronides, and S-Acyl CoA Conjugates Formed from Xenobiotic Carboxylic Acids in Human Liver Microsomes.
    Darnell M; Breitholtz K; Isin EM; Jurva U; Weidolf L
    Chem Res Toxicol; 2015 May; 28(5):886-96. PubMed ID: 25803559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.