These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 16167892)
1. Silencing a prohibitin alters plant development and senescence. Chen JC; Jiang CZ; Reid MS Plant J; 2005 Oct; 44(1):16-24. PubMed ID: 16167892 [TBL] [Abstract][Full Text] [Related]
2. Prohibitin is involved in mitochondrial biogenesis in plants. Ahn CS; Lee JH; Reum Hwang A; Kim WT; Pai HS Plant J; 2006 May; 46(4):658-67. PubMed ID: 16640602 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms. Nakagawa H; Jiang CJ; Sakakibara H; Kojima M; Honda I; Ajisaka H; Nishijima T; Koshioka M; Homma T; Mander LN; Takatsuji H Plant J; 2005 Feb; 41(4):512-23. PubMed ID: 15686516 [TBL] [Abstract][Full Text] [Related]
4. Characterization of two ethylene receptors PhERS1 and PhETR2 from petunia: PhETR2 regulates timing of anther dehiscence. Wang Y; Kumar PP J Exp Bot; 2007; 58(3):533-44. PubMed ID: 17158107 [TBL] [Abstract][Full Text] [Related]
5. Functional analysis of a RING domain ankyrin repeat protein that is highly expressed during flower senescence. Xu X; Jiang CZ; Donnelly L; Reid MS J Exp Bot; 2007; 58(13):3623-30. PubMed ID: 18057040 [TBL] [Abstract][Full Text] [Related]
6. Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower Tepals, tepal spots and leaves of asiatic hybrid lily. Yamagishi M; Shimoyamada Y; Nakatsuka T; Masuda K Plant Cell Physiol; 2010 Mar; 51(3):463-74. PubMed ID: 20118109 [TBL] [Abstract][Full Text] [Related]
7. Ethylene-sensitivity regulates proteolytic activity and cysteine protease gene expression in petunia corollas. Jones ML; Chaffin GS; Eason JR; Clark DG J Exp Bot; 2005 Oct; 56(420):2733-44. PubMed ID: 16131506 [TBL] [Abstract][Full Text] [Related]
8. Transgene-triggered, epigenetically regulated ectopic expression of a flower homeotic gene pMADS3 in Petunia. Kapoor M; Baba A; Kubo K; Shibuya K; Matsui K; Tanaka Y; Takatsuji H Plant J; 2005 Sep; 43(5):649-61. PubMed ID: 16115063 [TBL] [Abstract][Full Text] [Related]
9. Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Chen JC; Jiang CZ; Gookin TE; Hunter DA; Clark DG; Reid MS Plant Mol Biol; 2004 Jul; 55(4):521-30. PubMed ID: 15604697 [TBL] [Abstract][Full Text] [Related]
10. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Rijpkema AS; Zethof J; Gerats T; Vandenbussche M Plant J; 2009 Oct; 60(1):1-9. PubMed ID: 19453449 [TBL] [Abstract][Full Text] [Related]
11. Expression differences between normal and indeterminate1 maize suggest downstream targets of ID1, a floral transition regulator in maize. Coneva V; Zhu T; Colasanti J J Exp Bot; 2007; 58(13):3679-93. PubMed ID: 17928372 [TBL] [Abstract][Full Text] [Related]
13. Petunia floral volatile benzenoid/phenylpropanoid genes are regulated in a similar manner. Colquhoun TA; Verdonk JC; Schimmel BC; Tieman DM; Underwood BA; Clark DG Phytochemistry; 2010 Feb; 71(2-3):158-67. PubMed ID: 19889429 [TBL] [Abstract][Full Text] [Related]
14. Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Hou CJ; Yang CH Plant Cell Physiol; 2009 Aug; 50(8):1544-57. PubMed ID: 19570813 [TBL] [Abstract][Full Text] [Related]
15. Tissue-specific PhBPBT expression is differentially regulated in response to endogenous ethylene. Dexter RJ; Verdonk JC; Underwood BA; Shibuya K; Schmelz EA; Clark DG J Exp Bot; 2008; 59(3):609-18. PubMed ID: 18256048 [TBL] [Abstract][Full Text] [Related]
16. Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia. Geuten K; Becker A; Kaufmann K; Caris P; Janssens S; Viaene T; Theissen G; Smets E Plant J; 2006 Aug; 47(4):501-18. PubMed ID: 16856983 [TBL] [Abstract][Full Text] [Related]
17. Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula. Benlloch R; Roque E; Ferrándiz C; Cosson V; Caballero T; Penmetsa RV; Beltrán JP; Cañas LA; Ratet P; Madueño F Plant J; 2009 Oct; 60(1):102-11. PubMed ID: 19500303 [TBL] [Abstract][Full Text] [Related]
18. Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers. Nakatsuka T; Haruta KS; Pitaksutheepong C; Abe Y; Kakizaki Y; Yamamoto K; Shimada N; Yamamura S; Nishihara M Plant Cell Physiol; 2008 Dec; 49(12):1818-29. PubMed ID: 18974195 [TBL] [Abstract][Full Text] [Related]
19. A functional genetic assay for nuclear trafficking in plants. Kanneganti TD; Bai X; Tsai CW; Win J; Meulia T; Goodin M; Kamoun S; Hogenhout SA Plant J; 2007 Apr; 50(1):149-58. PubMed ID: 17346267 [TBL] [Abstract][Full Text] [Related]
20. Phytosulphokine gene regulation during maize (Zea mays L.) reproduction. Lorbiecke R; Steffens M; Tomm JM; Scholten S; von Wiegen P; Kranz E; Wienand U; Sauter M J Exp Bot; 2005 Jul; 56(417):1805-19. PubMed ID: 15897229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]