These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 16167892)
21. Isolation and properties of floral defensins from ornamental tobacco and petunia. Lay FT; Brugliera F; Anderson MA Plant Physiol; 2003 Mar; 131(3):1283-93. PubMed ID: 12644678 [TBL] [Abstract][Full Text] [Related]
22. Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy). Hileman LC; Drea S; Martino G; Litt A; Irish VF Plant J; 2005 Oct; 44(2):334-41. PubMed ID: 16212610 [TBL] [Abstract][Full Text] [Related]
23. The abundance of a single domain cyclophilin in Solanaceae is regulated as a function of organ type and high temperature and not by other environmental constraints. Kiełbowicz-Matuk A; Rey P; Rorat T Physiol Plant; 2007 Nov; 131(3):387-98. PubMed ID: 18251878 [TBL] [Abstract][Full Text] [Related]
24. Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Chang YY; Chiu YF; Wu JW; Yang CH Plant Cell Physiol; 2009 Aug; 50(8):1425-38. PubMed ID: 19541596 [TBL] [Abstract][Full Text] [Related]
25. The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity. Wigoda N; Ben-Nissan G; Granot D; Schwartz A; Weiss D Plant J; 2006 Dec; 48(5):796-805. PubMed ID: 17076804 [TBL] [Abstract][Full Text] [Related]
26. Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne. Ciannamea S; Kaufmann K; Frau M; Tonaco IA; Petersen K; Nielsen KK; Angenent GC; Immink RG J Exp Bot; 2006; 57(13):3419-31. PubMed ID: 17005923 [TBL] [Abstract][Full Text] [Related]
27. Homologs of genes associated with programmed cell death in animal cells are differentially expressed during senescence of Ipomoea nil petals. Yamada T; Ichimura K; Kanekatsu M; van Doorn WG Plant Cell Physiol; 2009 Mar; 50(3):610-25. PubMed ID: 19182226 [TBL] [Abstract][Full Text] [Related]
28. LEAFY, TERMINAL FLOWER1 and AGAMOUS are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina. Ordidge M; Chiurugwi T; Tooke F; Battey NH Plant J; 2005 Dec; 44(6):985-1000. PubMed ID: 16359391 [TBL] [Abstract][Full Text] [Related]
29. Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. Kapoor M; Arora R; Lama T; Nijhawan A; Khurana JP; Tyagi AK; Kapoor S BMC Genomics; 2008 Oct; 9():451. PubMed ID: 18826656 [TBL] [Abstract][Full Text] [Related]
30. A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence. Chang X; Donnelly L; Sun D; Rao J; Reid MS; Jiang CZ PLoS One; 2014; 9(2):e88320. PubMed ID: 24551088 [TBL] [Abstract][Full Text] [Related]
31. Involvement of EIN3 homologues in basic PR gene expression and flower development in tobacco plants. Hibi T; Kosugi S; Iwai T; Kawata M; Seo S; Mitsuhara I; Ohashi Y J Exp Bot; 2007; 58(13):3671-8. PubMed ID: 17965144 [TBL] [Abstract][Full Text] [Related]
32. Functional characterization of PhGR and PhGRL1 during flower senescence in the petunia. Yang W; Liu J; Tan Y; Zhong S; Tang N; Chen G; Yu Y Plant Cell Rep; 2015 Sep; 34(9):1561-8. PubMed ID: 25987314 [TBL] [Abstract][Full Text] [Related]
33. A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Van Moerkercke A; Schauvinhold I; Pichersky E; Haring MA; Schuurink RC Plant J; 2009 Oct; 60(2):292-302. PubMed ID: 19659733 [TBL] [Abstract][Full Text] [Related]
34. Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Yadav SR; Prasad K; Vijayraghavan U Genetics; 2007 May; 176(1):283-94. PubMed ID: 17409064 [TBL] [Abstract][Full Text] [Related]
35. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. Liu J; Li J; Wang H; Fu Z; Liu J; Yu Y J Exp Bot; 2011 Jan; 62(2):825-40. PubMed ID: 20974735 [TBL] [Abstract][Full Text] [Related]
36. Virus-Induced Gene Silencing for Functional Analysis of Flower Traits in Petunia. Broderick SR; Chapin LJ; Jones ML Methods Mol Biol; 2020; 2172():199-222. PubMed ID: 32557371 [TBL] [Abstract][Full Text] [Related]
37. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Ryu CM; Anand A; Kang L; Mysore KS Plant J; 2004 Oct; 40(2):322-31. PubMed ID: 15447657 [TBL] [Abstract][Full Text] [Related]
39. The acyl-activating enzyme PhAAE13 is an alternative enzymatic source of precursors for anthocyanin biosynthesis in petunia flowers. Chen G; Liu H; Wei Q; Zhao H; Liu J; Yu Y J Exp Bot; 2017 Jan; 68(3):457-467. PubMed ID: 28204578 [TBL] [Abstract][Full Text] [Related]