BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 16168425)

  • 1. Microstructure of beta-lactoglobulin-stabilized emulsions containing non-ionic surfactant and excess free protein: influence of heating.
    Kerstens S; Murray BS; Dickinson E
    J Colloid Interface Sci; 2006 Apr; 296(1):332-41. PubMed ID: 16168425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B.
    Knudsen JC; Øgendal LH; Skibsted LH
    Langmuir; 2008 Mar; 24(6):2603-10. PubMed ID: 18288877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of heat-induced aggregation of a beta-lactoglobulin-stabilized emulsion by very small additions of casein.
    Parkinson EL; Dickinson E
    Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):23-30. PubMed ID: 15542336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of protein concentration and order of addition on thermal stability of beta-lactoglobulin stabilized n-hexadecane oil-in-water emulsions at neutral pH.
    Kim HJ; Decker EA; McClements DJ
    Langmuir; 2005 Jan; 21(1):134-9. PubMed ID: 15620294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of iota-carrageenan on droplet flocculation of beta-lactoglobulin-stabilized oil-in-water emulsions during thermal processing.
    Gu YS; Decker EA; McClements DJ
    Langmuir; 2004 Oct; 20(22):9565-70. PubMed ID: 15491187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of whey proteins during heat treatment of oil-in-water emulsions formed with whey protein isolate and hydroxylated lecithin.
    Jiménez-Flores R; Ye A; Singh H
    J Agric Food Chem; 2005 May; 53(10):4213-9. PubMed ID: 15884863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Irreversible thermal denaturation of beta-lactoglobulin retards adsorption of carrageenan onto beta-lactoglobulin-coated droplets.
    Gu YS; Decker EA; McClements DJ
    Langmuir; 2006 Aug; 22(18):7480-6. PubMed ID: 16922524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of thermal treatment, ionic strength, and pH on the short-term and long-term coalescence stability of beta-lactoglobulin emulsions.
    Tcholakova S; Denkov ND; Sidzhakova D; Campbell B
    Langmuir; 2006 Jul; 22(14):6042-52. PubMed ID: 16800657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of environmental stresses on stability of oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin-iota-carrageenan membranes.
    Gu YS; Regnier L; McClements DJ
    J Colloid Interface Sci; 2005 Jun; 286(2):551-8. PubMed ID: 15897070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of salivary proteins at oil-water interfaces stabilized by lysozyme and beta-lactoglobulin.
    Silletti E; Vitorino RM; Schipper R; Amado FM; Vingerhoeds MH
    Arch Oral Biol; 2010 Apr; 55(4):268-78. PubMed ID: 20197185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN).
    Helgason T; Awad TS; Kristbergsson K; McClements DJ; Weiss J
    J Colloid Interface Sci; 2009 Jun; 334(1):75-81. PubMed ID: 19380149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of free protein on flocculation stability of beta-lactoglobulin stabilized oil-in-water emulsions at neutral pH and ambient temperature.
    Kim HJ; Decker EA; McClements DJ
    Langmuir; 2004 Nov; 20(24):10394-8. PubMed ID: 15544365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide.
    Moschakis T; Murray BS; Dickinson E
    Langmuir; 2006 May; 22(10):4710-9. PubMed ID: 16649786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Front-face fluorescence spectroscopy study of globular proteins in emulsions: displacement of BSA by a nonionic surfactant.
    Rampon V; Genot C; Riaublanc A; Anton M; Axelos MA; McClements DJ
    J Agric Food Chem; 2003 Apr; 51(9):2482-9. PubMed ID: 12696924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface protein composition and concentration of whey protein isolate-stabilized oil-in-water emulsions: effect of heat treatment.
    Ye A
    Colloids Surf B Biointerfaces; 2010 Jun; 78(1):24-9. PubMed ID: 20211549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of interfacial protein cross-linking on the in vitro digestibility of emulsified corn oil by pancreatic lipase.
    Sandra S; Decker EA; McClements DJ
    J Agric Food Chem; 2008 Aug; 56(16):7488-94. PubMed ID: 18605732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of competitive adsorption on flocculation and rheology of high-pressure-treated milk protein-stabilized emulsions.
    Dickinson E; James JD
    J Agric Food Chem; 1999 Jan; 47(1):25-30. PubMed ID: 10563843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural rearrangement of β-lactoglobulin at different oil-water interfaces and its effect on emulsion stability.
    Zhai J; Wooster TJ; Hoffmann SV; Lee TH; Augustin MA; Aguilar MI
    Langmuir; 2011 Aug; 27(15):9227-36. PubMed ID: 21668007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the emulsion droplet type on the rheological characteristics and microstructure of rennet gels from reconstituted milk.
    Gaygadzhiev Z; Hill A; Corredig M
    J Dairy Res; 2009 Aug; 76(3):349-55. PubMed ID: 19519978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.