These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 16168581)
41. Entomopathogenic potential of Metarhizium anisopliae isolated from engorged females and tested in eggs and larvae of Boophilus microplus (Acari: Ixodidae). Fernandes EK; da Costa GL; de Moraes AM; Bittencourt VR J Basic Microbiol; 2004; 44(4):270-4. PubMed ID: 15266598 [TBL] [Abstract][Full Text] [Related]
42. Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Rangel DE; Braga GU; Fernandes ÉK; Keyser CA; Hallsworth JE; Roberts DW Curr Genet; 2015 Aug; 61(3):383-404. PubMed ID: 25791499 [TBL] [Abstract][Full Text] [Related]
43. Medium components and culture conditions affect the thermotolerance of aerial conidia of fungal biocontrol agent Beauveria bassiana. Ying SH; Feng MG Lett Appl Microbiol; 2006 Sep; 43(3):331-5. PubMed ID: 16910941 [TBL] [Abstract][Full Text] [Related]
44. Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fang W; Pava-ripoll M; Wang S; St Leger R Fungal Genet Biol; 2009 Mar; 46(3):277-85. PubMed ID: 19124083 [TBL] [Abstract][Full Text] [Related]
45. Culture of Metarhizium robertsii on salicylic-acid supplemented medium induces increased conidial thermotolerance. Rangel DE; Fernandes ÉK; Anderson AJ; Roberts DW Fungal Biol; 2012 Mar; 116(3):438-42. PubMed ID: 22385625 [TBL] [Abstract][Full Text] [Related]
46. Characterization of a newly discovered China variety of Metarhizium anisopliae (M. anisopliae var. dcjhyium) for virulence to termites, isoenzyme, and phylogenic analysis. Dong C; Zhang J; Chen W; Huang H; Hu Y Microbiol Res; 2007; 162(1):53-61. PubMed ID: 16949807 [TBL] [Abstract][Full Text] [Related]
47. [Comparative susceptibility of Myzus persicae to 16 strains of Metarhizium spp. from different host insects and geographic regions]. Shan LT; Feng MG Wei Sheng Wu Xue Bao; 2006 Aug; 46(4):602-7. PubMed ID: 17037063 [TBL] [Abstract][Full Text] [Related]
48. The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. Nahar P; Ghormade V; Deshpande MV J Invertebr Pathol; 2004 Feb; 85(2):80-8. PubMed ID: 15050837 [TBL] [Abstract][Full Text] [Related]
49. Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens. Fang W; Pei Y; Bidochka MJ Can J Microbiol; 2006 Jul; 52(7):623-6. PubMed ID: 16917517 [TBL] [Abstract][Full Text] [Related]
50. Blastospores from Gotti IA; Moreira CC; Delalibera I; De Fine Licht HH Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375096 [TBL] [Abstract][Full Text] [Related]
51. Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. Oliveira AS; Braga GUL; Rangel DEN Fungal Biol; 2018 Jun; 122(6):555-562. PubMed ID: 29801800 [TBL] [Abstract][Full Text] [Related]
52. Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Freimoser FM; Screen S; Bagga S; Hu G; St Leger RJ Microbiology (Reading); 2003 Jan; 149(Pt 1):239-47. PubMed ID: 12576597 [TBL] [Abstract][Full Text] [Related]
53. Attachment of Metarhizium anisopliae to the southern green stink bug Nezara viridula cuticle and fungistatic effect of cuticular lipids and aldehydes. Sosa-Gomez DR; Boucias DG; Nation JL J Invertebr Pathol; 1997 Jan; 69(1):31-9. PubMed ID: 9028925 [TBL] [Abstract][Full Text] [Related]
55. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Wang C; St Leger RJ Eukaryot Cell; 2007 May; 6(5):808-16. PubMed ID: 17337634 [TBL] [Abstract][Full Text] [Related]
56. Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Freimoser FM; Hu G; Leger RJS Microbiology (Reading); 2005 Feb; 151(Pt 2):361-371. PubMed ID: 15699187 [TBL] [Abstract][Full Text] [Related]
57. Application of representational difference analysis to identify sequence tags expressed by Metarhizium anisopliae during the infection process of the tick Boophilus microplus cuticle. Dutra V; Nakazato L; Broetto L; Silveira Schrank I; Henning Vainstein M; Schrank A Res Microbiol; 2004 May; 155(4):245-51. PubMed ID: 15142621 [TBL] [Abstract][Full Text] [Related]
58. Conidial pigmentation is important to tolerance against solar-simulated radiation in the entomopathogenic fungus Metarhizium anisopliae. Braga GU; Rangel DE; Flint SD; Anderson AJ; Roberts DW Photochem Photobiol; 2006; 82(2):418-22. PubMed ID: 16613494 [TBL] [Abstract][Full Text] [Related]
59. Virulence of Metarhizium anisopliae to eggs and immature stages of Stomoxys calcitrans. Moraes AP; Angelo Ida C; Fernandes EK; Bittencourt VR; Bittencourt AJ Ann N Y Acad Sci; 2008 Dec; 1149():384-7. PubMed ID: 19120256 [TBL] [Abstract][Full Text] [Related]
60. Recombination within sympatric cryptic species of the insect pathogenic fungus Metarhizium anisopliae. Bidochka MJ; Small CL; Spironello M Environ Microbiol; 2005 Sep; 7(9):1361-8. PubMed ID: 16104859 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]