BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 16168724)

  • 1. Compatible solute effects on thermostability of glutamine synthetase and aspartate transcarbamoylase from Methanococcus jannaschii.
    Neelon K; Schreier HJ; Meekins H; Robinson PM; Roberts MF
    Biochim Biophys Acta; 2005 Dec; 1753(2):164-73. PubMed ID: 16168724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the aspartate transcarbamoylase from Methanococcus jannaschii.
    Hack ES; Vorobyova T; Sakash JB; West JM; Macol CP; Hervé G; Williams MK; Kantrowitz ER
    J Biol Chem; 2000 May; 275(21):15820-7. PubMed ID: 10748118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization and structure determination of the catalytic trimer of Methanococcus jannaschii aspartate transcarbamoylase.
    Vitali J; Vorobyova T; Webster G; Kantrowitz ER
    Acta Crystallogr D Biol Crystallogr; 2000 Aug; 56(Pt 8):1061-3. PubMed ID: 10944354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the catalytic trimer of Methanococcus jannaschii aspartate transcarbamoylase.
    Vitali J; Colaneri MJ; Kantrowitz E
    Proteins; 2008 May; 71(3):1324-34. PubMed ID: 18058907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical denaturation and elevated folding temperatures are required for wild-type activity and stability of recombinant Methanococcus jannaschii 20S proteasome.
    Frankenberg RJ; Hsu TS; Yakota H; Kim R; Clark DS
    Protein Sci; 2001 Sep; 10(9):1887-96. PubMed ID: 11514679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase in a hexagonal crystal form: insights into the path of carbamoyl phosphate to the active site of the enzyme.
    Vitali J; Singh AK; Soares AS; Colaneri MJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 May; 68(Pt 5):527-34. PubMed ID: 22691781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the catalytic trimer of Methanococcus jannaschii aspartate transcarbamoylase in an orthorhombic crystal form.
    Vitali J; Colaneri MJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Sep; 64(Pt 9):776-80. PubMed ID: 18765902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GroE chaperonin-assisted folding and assembly of dodecameric glutamine synthetase.
    Fisher MT
    Biochemistry (Mosc); 1998 Apr; 63(4):382-98. PubMed ID: 9556521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. beta-Glutamate as a substrate for glutamine synthetase.
    Robinson P; Neelon K; Schreier HJ; Roberts MF
    Appl Environ Microbiol; 2001 Oct; 67(10):4458-63. PubMed ID: 11571143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP.
    Fisher MT
    Biochemistry; 1992 Apr; 31(16):3955-63. PubMed ID: 1348957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A small, thermostable, and monofunctional chorismate mutase from the archaeon Methanococcus jannaschii.
    MacBeath G; Kast P; Hilvert D
    Biochemistry; 1998 Jul; 37(28):10062-73. PubMed ID: 9665711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of the catalytic subunit of aspartate transcarbamoylase with a zinc-containing polypeptide fragment of the regulatory chain leads to increases in thermal stability.
    Peterson CB; Zhou BB; Hsieh D; Creager AN; Schachman HK
    Protein Sci; 1994 Jun; 3(6):960-6. PubMed ID: 8069225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal unfolding of dodecameric glutamine synthetase: inhibition of aggregation by urea.
    Nosworthy NJ; Ginsburg A
    Protein Sci; 1997 Dec; 6(12):2617-23. PubMed ID: 9416610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaperonin-assisted folding of glutamine synthetase under nonpermissive conditions: off-pathway aggregation propensity does not determine the co-chaperonin requirement.
    Voziyan PA; Fisher MT
    Protein Sci; 2000 Dec; 9(12):2405-12. PubMed ID: 11206062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic effects of active-site ligands on the reversible, partial unfolding of dodecameric glutamine synthetase from Escherichia coli: calorimetric studies.
    Zolkiewski M; Ginsburg A
    Biochemistry; 1992 Dec; 31(48):11991-2000. PubMed ID: 1360813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of thermal stabilizing interactions in mesophilic and thermophilic adenylate kinases from the genus Methanococcus.
    Haney PJ; Stees M; Konisky J
    J Biol Chem; 1999 Oct; 274(40):28453-8. PubMed ID: 10497207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural changes in GroEL effected by binding a denatured protein substrate.
    Falke S; Fisher MT; Gogol EP
    J Mol Biol; 2001 May; 308(4):569-77. PubMed ID: 11350160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclitols protect glutamine synthetase and malate dehydrogenase against heat induced deactivation and thermal denaturation.
    Jaindl M; Popp M
    Biochem Biophys Res Commun; 2006 Jun; 345(2):761-5. PubMed ID: 16701563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose-6-phosphate isomerase from the hyperthermophilic archaeon Methanococcus jannaschii: characterization of the first archaeal member of the phosphoglucose isomerase superfamily.
    Rudolph B; Hansen T; Schönheit P
    Arch Microbiol; 2004 Jan; 181(1):82-7. PubMed ID: 14655001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural similarity between ornithine and aspartate transcarbamoylases of Escherichia coli: characterization of the active site and evidence for an interdomain carboxy-terminal helix in ornithine transcarbamoylase.
    Murata LB; Schachman HK
    Protein Sci; 1996 Apr; 5(4):709-18. PubMed ID: 8845761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.