These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 16169046)
1. Evaluation of the phytotoxicity of contaminated sediments deposited "on soil": II. Impact of water draining from deposits on the development and physiological status of neighbouring plants at growth stage. Bedell JP; Briant A; Delolme C; Lassabatère L; Perrodin Y Chemosphere; 2006 Mar; 62(8):1311-23. PubMed ID: 16169046 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the phytotoxicity of contaminated sediments deposited "on soil". I. Impact of water draining from the deposit on the germination of neighbouring plants. Bedell JP; Briant A; Delolme C; Perrodin Y Chemosphere; 2003 Jan; 50(3):393-402. PubMed ID: 12656260 [TBL] [Abstract][Full Text] [Related]
3. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
4. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Arienzo M; Adamo P; Cozzolino V Sci Total Environ; 2004 Feb; 319(1-3):13-25. PubMed ID: 14967498 [TBL] [Abstract][Full Text] [Related]
5. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chiu KK; Ye ZH; Wong MH Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905 [TBL] [Abstract][Full Text] [Related]
6. Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Almås AR; Lombnaes P; Sogn TA; Mulder J Chemosphere; 2006 Mar; 62(10):1647-55. PubMed ID: 16084561 [TBL] [Abstract][Full Text] [Related]
7. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Liang Y; Wong JW; Wei L Chemosphere; 2005 Jan; 58(4):475-83. PubMed ID: 15620739 [TBL] [Abstract][Full Text] [Related]
8. Zinc and copper uptake by plants under two transpiration rates. Part II. Buckwheat (Fagopyrum esculentum L.). Tani FH; Barrington S Environ Pollut; 2005 Dec; 138(3):548-58. PubMed ID: 16043272 [TBL] [Abstract][Full Text] [Related]
9. The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil. Huang Y; Tao S; Chen YJ J Environ Sci (China); 2005; 17(2):276-80. PubMed ID: 16295905 [TBL] [Abstract][Full Text] [Related]
10. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity. Bidar G; Garçon G; Pruvot C; Dewaele D; Cazier F; Douay F; Shirali P Environ Pollut; 2007 Jun; 147(3):546-53. PubMed ID: 17141383 [TBL] [Abstract][Full Text] [Related]
11. Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Santibáñez C; Verdugo C; Ginocchio R Sci Total Environ; 2008 May; 395(1):1-10. PubMed ID: 18342913 [TBL] [Abstract][Full Text] [Related]
12. Evidence for preferential depths of metal retention in roots of salt marsh plants. Caetano M; Vale C; Cesário R; Fonseca N Sci Total Environ; 2008 Feb; 390(2-3):466-74. PubMed ID: 18036637 [TBL] [Abstract][Full Text] [Related]
13. Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Sawidis T; Chettri MK; Zachariadis GA; Stratis JA Ecotoxicol Environ Saf; 1995 Oct; 32(1):73-80. PubMed ID: 8565880 [TBL] [Abstract][Full Text] [Related]
14. Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Vernay P; Gauthier-Moussard C; Hitmi A Chemosphere; 2007 Jul; 68(8):1563-75. PubMed ID: 17434568 [TBL] [Abstract][Full Text] [Related]
15. Influence of tidal regime on the distribution of trace metals in a contaminated tidal freshwater marsh soil colonized with common reed (Phragmites australis). Teuchies J; de Deckere E; Bervoets L; Meynendonckx J; van Regenmortel S; Blust R; Meire P Environ Pollut; 2008 Sep; 155(1):20-30. PubMed ID: 18158203 [TBL] [Abstract][Full Text] [Related]
16. Organic residues as immobilizing agents in aided phytostabilization: (II) effects on soil biochemical and ecotoxicological characteristics. Alvarenga P; Palma P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2009 Mar; 74(10):1301-8. PubMed ID: 19091381 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Sci Total Environ; 2008 Nov; 406(1-2):43-56. PubMed ID: 18799197 [TBL] [Abstract][Full Text] [Related]
18. Assessment of the phytoextraction potential of high biomass crop plants. Hernández-Allica J; Becerril JM; Garbisu C Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Lin Q; Wang Z; Ma S; Chen Y Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990 [TBL] [Abstract][Full Text] [Related]
20. Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants. Ruiz E; Rodríguez L; Alonso-Azcárate J Chemosphere; 2009 May; 75(8):1035-41. PubMed ID: 19232427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]