BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16169213)

  • 1. Effects of humic substances on the oxidation of pentachlorophenol by peroxosulfate catalyzed by iron(III)-phthalocyanine-tetrasulfonic acid.
    Fukushima M; Tatsumi K
    Bioresour Technol; 2006 Sep; 97(14):1605-11. PubMed ID: 16169213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of humic substances on the removal of pentachlorophenol by a biomimetic catalytic system with a water-soluble iron(III)-porphyrin complex.
    Fukushima M; Sawada A; Kawasaki M; Ichikawa H; Morimoto K; Tatsumi K; Aoyama M
    Environ Sci Technol; 2003 Mar; 37(5):1031-6. PubMed ID: 12666937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of pentachlorophenol in contaminated soil suspensions by potassium monopersulfate catalyzed oxidation by a supramolecular complex between tetra(p-sulfophenyl)porphineiron(III) and hydroxypropyl-beta-cyclodextrin.
    Fukushima M; Tatsumi K
    J Hazard Mater; 2007 Jun; 144(1-2):222-8. PubMed ID: 17101215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative degradation of 2,4,6-trichlorophenol and pentachlorophenol in contaminated soil suspensions using a supramolecular catalyst of 5,10,15,20-tetrakis (p-hydroxyphenyl)porphine-iron(III) bound to humic acid via formaldehyde polycondensation.
    Fukushima M; Shigematsu S; Nagao S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Sep; 44(11):1088-97. PubMed ID: 19847698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of humic acid type on the oxidation products of pentachlorophenol using hybrid catalysts prepared by introducing iron(III)-5,10,15,20-tetrakis(p-hydroxyphenyl) porphyrin into hydroquinone-derived humic acids.
    Fukushima M; Shigematsu S; Nagao S
    Chemosphere; 2010 Feb; 78(9):1155-9. PubMed ID: 20042219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of humic substances on the pattern of oxidation products of pentachlorophenol induced by a biomimetic catalytic system using tetra(p-sulfophenyl)porphineiron(III) and KHSO5.
    Fukushima M; Ichikawa H; Kawasaki M; Sawada A; Morimoto K; Tatsumi K
    Environ Sci Technol; 2003 Jan; 37(2):386-94. PubMed ID: 12564913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oxidation of tetrabromobisphenol A by potassium monopersulfate with an iron(III)-phthalocyanine-tetrasulfonic acid catalyst in the presence of humic acid.
    Maeno S; Mizutani Y; Zhu Q; Miyamoto T; Fukushima M; Kuramitz H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(9):981-7. PubMed ID: 24798896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the coupling product between oxidation products derived from pentachlorophenol and cyclodextrins.
    Fukushima M; Tatsumi K
    J Environ Sci Health B; 2006; 41(4):357-67. PubMed ID: 16753955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hydroxypropyl-beta-cyclodextrin on the degradation of pentachlorophenol by potassium monopersulfate catalyzed with iron(III)-porphyrin complex.
    Fukushima M; Tatsumi K
    Environ Sci Technol; 2005 Dec; 39(23):9337-42. PubMed ID: 16382961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic oxidation of pentachlorophenol in contaminated soil suspensions by Fe+3-resin/H2O2.
    Liou RM; Chen SH; Hung MY; Hsu CS
    Chemosphere; 2004 Jun; 55(9):1271-80. PubMed ID: 15081768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarity and Molecular Weight of Compost-Derived Humic Acids Impact Bio-dechlorination of Pentachlorophenol.
    Yuan Y; Xi B; He XS; Tan W; Zhang H; Li D; Yang C; Zhao X
    J Agric Food Chem; 2019 May; 67(17):4726-4733. PubMed ID: 30964976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dechlorination of pentachlorophenol by zerovalent iron in presence of carboxylic acids.
    Hou M; Wan H; Zhou Q; Liu X; Luo W; Fan Y
    Bull Environ Contam Toxicol; 2009 Feb; 82(2):137-44. PubMed ID: 19052685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide-water interface.
    Li F; Wang X; Li Y; Liu C; Zeng F; Zhang L; Hao M; Ruan H
    J Colloid Interface Sci; 2008 May; 321(2):332-41. PubMed ID: 18329661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-polymerization of penta-halogenated phenols in humic substances by catalytic oxidation using biomimetic catalysis.
    Fontaine B; Piccolo A
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1485-93. PubMed ID: 21969186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insight into the adsorption mechanism of PCP by humic substances with different degrees of humification in the presence of Cr(VI).
    Xu L; Zhang J; Barnie S; Zhang H; Liu F; Chen H
    Chemosphere; 2021 Dec; 284():131223. PubMed ID: 34182284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A humic substance analogue AQDS stimulates Geobacter sp. abundance and enhances pentachlorophenol transformation in a paddy soil.
    Chen M; Tong H; Liu C; Chen D; Li F; Qiao J
    Chemosphere; 2016 Oct; 160():141-8. PubMed ID: 27372263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subsurface interactions of Fe(II) with humic acid or landfill leachate do not control subsequent iron(III) (hydr)oxide production at the surface.
    Jackson A; Gaffney JW; Boult S
    Environ Sci Technol; 2012 Jul; 46(14):7543-50. PubMed ID: 22712619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of compost-derived humic acid on the bio-dechlorination of pentachlorophenol in high iron content paddy soil.
    Xiao Y; Lu H; Tan W; Tang J; Wang Y; Shi J; Yu T; Yuan Y
    Ecotoxicol Environ Saf; 2021 Dec; 227():112900. PubMed ID: 34673405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid total destruction of chlorophenols by activated hydrogen peroxide.
    Gupta SS; Stadler M; Noser CA; Ghosh A; Steinhoff B; Lenoir D; Horwitz CP; Schramm KW; Collins TJ
    Science; 2002 Apr; 296(5566):326-8. PubMed ID: 11951040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation pathways of pentachlorophenol by photo-Fenton systems in the presence of iron(III), humic acid, and hydrogen peroxide.
    Fukushima M; Tatsumi K
    Environ Sci Technol; 2001 May; 35(9):1771-8. PubMed ID: 11355191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.