These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16169213)

  • 21. Decolorization of orange II by catalytic oxidation using iron (III) phthalocyanine-tetrasulfonic acid.
    Rismayani S; Fukushima M; Ichikawa H; Tatsumi K
    J Hazard Mater; 2004 Oct; 114(1-3):175-81. PubMed ID: 15511589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneous photodegradation of pentachlorophenol and iron cycling with goethite, hematite and oxalate under UVA illumination.
    Lan Q; Li FB; Sun CX; Liu CS; Li XZ
    J Hazard Mater; 2010 Feb; 174(1-3):64-70. PubMed ID: 19800730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of O
    Gunawardana B; Swedlund PJ; Singhal N
    Environ Sci Pollut Res Int; 2019 Sep; 26(27):27687-27698. PubMed ID: 31338765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pentachlorophenol decomposition by electron beam process enhanced in the presence of Fe(III)-EDTA.
    Kwon BG; Kim E; Lee JH
    Chemosphere; 2009 Mar; 74(10):1335-9. PubMed ID: 19117591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of groundwater geochemistry on pentachlorophenol remediation by smectite-templated nanosized Pd0/Fe0.
    Jia H; Gu C; Li H; Fan X; Li S; Wang C
    Environ Sci Pollut Res Int; 2012 Sep; 19(8):3498-505. PubMed ID: 22528999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potassium monopersulfate oxidation of 2,4,6-tribromophenol catalyzed by a SiO2-supported iron(III)-5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin.
    Zhu Q; Mizutani Y; Maeno S; Nishimoto R; Miyamoto T; Fukushima M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(13):1593-601. PubMed ID: 23947696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of phosphorus addition on the reductive transformation of pentachlorophenol (PCP) and iron reduction with microorganism involvement.
    Wang Y; Liu X; Huang J; Xiao W; Zhang J; Yin C
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22852-22860. PubMed ID: 28444568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variation of iron redox kinetics and its relation with molecular composition of standard humic substances at circumneutral pH.
    Lee YP; Fujii M; Kikuchi T; Terao K; Yoshimura C
    PLoS One; 2017; 12(4):e0176484. PubMed ID: 28453538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of arsenic and humic substances (HSs) by electro-ultrafiltration (EUF).
    Weng YH; Chaung-Hsieh LH; Lee HH; Li KC; Huang CP
    J Hazard Mater; 2005 Jun; 122(1-2):171-6. PubMed ID: 15943938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Fe(III) on the bromate reduction by humic substances in aqueous solution.
    Xie L; Shang C; Zhou Q
    J Environ Sci (China); 2008; 20(3):257-61. PubMed ID: 18595389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneous photodegradation of pentachlorophenol with maghemite and oxalate under UV illumination.
    Lan Q; Li F; Liu C; Li XZ
    Environ Sci Technol; 2008 Nov; 42(21):7918-23. PubMed ID: 19031881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the oxidation products produced by tetrahalobisphenol A flame retardants as a result of potassium monopersulfate oxidation with an iron(III)-tetrakis(p-sulfonatophenyl)porphyrin in the presence of humic acid.
    Mizutani Y; Maeno S; Zhu Q; Fukushima M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(4):365-75. PubMed ID: 24345234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioremediation of soil contaminated with pentachlorophenol (PCP) using humic acids bound on zeolite.
    Dercová K; Sejáková Z; Skokanová M; Barancíková G; Makovníková J
    Chemosphere; 2007 Jan; 66(5):783-90. PubMed ID: 16876229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of the enhanced degradation of pentachlorophenol by ultrasound in the presence of elemental iron.
    Dai Y; Li F; Ge F; Zhu F; Wu L; Yang X
    J Hazard Mater; 2006 Oct; 137(3):1424-9. PubMed ID: 16762499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron(III) reduction.
    Yu HY; Wang YK; Chen PC; Li FB; Chen MJ; Hu M; Ouyang X
    J Environ Manage; 2014 Jan; 132():42-8. PubMed ID: 24286925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The reactivity of well-dispersed zerovalent iron nanoparticles toward pentachlorophenol in water.
    Tso CP; Shih YH
    Water Res; 2015 Apr; 72():372-80. PubMed ID: 25575963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
    Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C
    Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidation and coagulation of humic substances by potassium ferrate.
    Graham NJ; Khoi TT; Jiang JQ
    Water Sci Technol; 2010; 62(4):929-36. PubMed ID: 20729598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fenton's oxidation of pentachlorophenol.
    Zimbron JA; Reardon KF
    Water Res; 2009 Apr; 43(7):1831-40. PubMed ID: 19249810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coagulation of humic substances and dissolved organic matter with a ferric salt: an electron energy loss spectroscopy investigation.
    Jung AV; Chanudet V; Ghanbaja J; Lartiges BS; Bersillon JL
    Water Res; 2005 Oct; 39(16):3849-62. PubMed ID: 16112165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.