These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 16169553)
1. Viscoelastic modelling of impacted morsellised bone accurately describes unloading behaviour: an experimental study of stiffness moduli and recoil properties. Fosse L; Muller S; Rønningen H; Irgens F; Benum P J Biomech; 2006; 39(12):2295-302. PubMed ID: 16169553 [TBL] [Abstract][Full Text] [Related]
2. Factors affecting stiffness properties in impacted morsellized bone used in revision hip surgery: an experimental in vitro study. Fosse L; Rønningen H; Benum P; Lydersen S; Sandven RB J Biomed Mater Res A; 2006 Aug; 78(2):423-31. PubMed ID: 16739109 [TBL] [Abstract][Full Text] [Related]
3. Impacted bone stiffness measured during construction of morsellised bone samples. Fosse L; Rønningen H; Lund-Larsen J; Benum P; Grande L J Biomech; 2004 Nov; 37(11):1757-66. PubMed ID: 15388319 [TBL] [Abstract][Full Text] [Related]
4. Influence of water and fat content on compressive stiffness properties of impacted morsellized bone: an experimental ex vivo study on bone pellets. Fosse L; Rønningen H; Benum P; Sandven RB Acta Orthop; 2006 Feb; 77(1):15-22. PubMed ID: 16534697 [TBL] [Abstract][Full Text] [Related]
5. Pressure during compaction of morsellised bone gives an increase in stiffness: an in vitro study. Lunde KB; Kaehler N; Rønningen H; Fosse L J Biomech; 2008; 41(1):231-4. PubMed ID: 17692853 [TBL] [Abstract][Full Text] [Related]
6. Morsellised sawbones is an acceptable experimental substitute for the in vitro elastic and viscoelastic mechanical characterisation of morsellised cancellous bone undergoing impaction grafting. Ayers MP; Clift SE; Gheduzzi S Med Eng Phys; 2014 Jan; 36(1):26-31. PubMed ID: 24075067 [TBL] [Abstract][Full Text] [Related]
7. Constitutive models for impacted morsellised cortico-cancellous bone. Phillips A; Pankaj P; May F; Taylor K; Howie C; Usmani A Biomaterials; 2006 Mar; 27(9):2162-70. PubMed ID: 16309740 [TBL] [Abstract][Full Text] [Related]
8. Constitutive models for constrained compression of unimpacted and impacted human morselized bone grafts. Lunde KB; Foss OA; Fosse L; Skallerud B J Biomech Eng; 2008 Dec; 130(6):061014. PubMed ID: 19045543 [TBL] [Abstract][Full Text] [Related]
9. A comparison of the viscoelastic properties of bone grafts. Datta A; Gheduzzi S; Miles AW Clin Biomech (Bristol); 2006 Aug; 21(7):761-6. PubMed ID: 16713046 [TBL] [Abstract][Full Text] [Related]
10. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content. Kotha SP; Guzelsu N J Biomech; 2007; 40(1):36-45. PubMed ID: 16434048 [TBL] [Abstract][Full Text] [Related]
11. Constitutive modelling of inelastic behaviour of cortical bone. Natali AN; Carniel EL; Pavan PG Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444 [TBL] [Abstract][Full Text] [Related]
12. Particle size influence in an impaction bone grafting model. Comparison of fresh-frozen and freeze-dried allografts. Cornu O; Schubert T; Libouton X; Manil O; Godts B; Van Tomme J; Banse X; Delloye C J Biomech; 2009 Oct; 42(14):2238-42. PubMed ID: 19656513 [TBL] [Abstract][Full Text] [Related]
13. On the applicability of bovine morsellized cortico-cancellous bone as a substitute for human morsellized cortico-cancellous bone for in vitro mechanical testing. Lunde KB; Foss OA; Skallerud B J Biomech; 2008 Dec; 41(16):3469-74. PubMed ID: 18995858 [TBL] [Abstract][Full Text] [Related]
14. [Tensile mechanical characteristics of decalcified cortical bone matrix]. Luo G; Zhang Y; Jiang Y; Huang F; Qin T Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Apr; 26(4):501-5. PubMed ID: 22568337 [TBL] [Abstract][Full Text] [Related]
15. The modified cam clay model for constrained compression of human morsellised bone: effects of porosity on the mechanical behaviour. Lunde KB; Skallerud B J Mech Behav Biomed Mater; 2009 Jan; 2(1):43-50. PubMed ID: 19627806 [TBL] [Abstract][Full Text] [Related]
16. In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix. Zioupos P Eur J Morphol; 2005; 42(1-2):31-41. PubMed ID: 16123022 [TBL] [Abstract][Full Text] [Related]
17. Viscoelastic characterization of the porcine temporomandibular joint disc under unconfined compression. Allen KD; Athanasiou KA J Biomech; 2006; 39(2):312-22. PubMed ID: 16321633 [TBL] [Abstract][Full Text] [Related]
18. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
19. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Pahr DH; Zysset PK Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122 [TBL] [Abstract][Full Text] [Related]
20. Physical exercise improves properties of bone and its collagen network in growing and maturing mice. Isaksson H; Tolvanen V; Finnilä MA; Iivarinen J; Tuukkanen J; Seppänen K; Arokoski JP; Brama PA; Jurvelin JS; Helminen HJ Calcif Tissue Int; 2009 Sep; 85(3):247-56. PubMed ID: 19641838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]