BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 16169902)

  • 1. Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis.
    Miyata T; Suzuki H; Oyama T; Mayanagi K; Ishino Y; Morikawa K
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13795-800. PubMed ID: 16169902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The clamp-loading complex for processive DNA replication.
    Miyata T; Oyama T; Mayanagi K; Ishino S; Ishino Y; Morikawa K
    Nat Struct Mol Biol; 2004 Jul; 11(7):632-6. PubMed ID: 15208692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional interactions of a homolog of proliferating cell nuclear antigen with DNA polymerases in Archaea.
    Cann IK; Ishino S; Hayashi I; Komori K; Toh H; Morikawa K; Ishino Y
    J Bacteriol; 1999 Nov; 181(21):6591-9. PubMed ID: 10542158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reconstituted human Chl12-RFC complex functions as a second PCNA loader.
    Shiomi Y; Shinozaki A; Sugimoto K; Usukura J; Obuse C; Tsurimoto T
    Genes Cells; 2004 Apr; 9(4):279-90. PubMed ID: 15066120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex.
    Bowman GD; O'Donnell M; Kuriyan J
    Nature; 2004 Jun; 429(6993):724-30. PubMed ID: 15201901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interactions of an archaeal sliding clamp with mammalian clamp loader and DNA polymerase delta.
    Ishino Y; Tsurimoto T; Ishino S; Cann IK
    Genes Cells; 2001 Aug; 6(8):699-706. PubMed ID: 11532029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between DNA polymerase and proliferating cell nuclear antigen switches off base excision repair of uracil and hypoxanthine during replication in archaea.
    Emptage K; O'Neill R; Solovyova A; Connolly BA
    J Mol Biol; 2008 Nov; 383(4):762-71. PubMed ID: 18761016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader.
    Gaubitz C; Liu X; Pajak J; Stone NP; Hayes JA; Demo G; Kelch BA
    Elife; 2022 Feb; 11():. PubMed ID: 35179493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA polymerase switching on homotrimeric PCNA at the replication fork of the euryarchaea Pyrococcus abyssi.
    Rouillon C; Henneke G; Flament D; Querellou J; Raffin JP
    J Mol Biol; 2007 Jun; 369(2):343-55. PubMed ID: 17442344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch.
    Gaubitz C; Liu X; Magrino J; Stone NP; Landeck J; Hedglin M; Kelch BA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23571-23580. PubMed ID: 32907938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional electron microscopy of the clamp loader small subunit from Pyrococcus furiosus.
    Mayanagi K; Miyata T; Oyama T; Ishino Y; Morikawa K
    J Struct Biol; 2001 Apr; 134(1):35-45. PubMed ID: 11469875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanism of loading the PCNA sliding clamp by RFC.
    Dionne I; Brown NJ; Woodgate R; Bell SD
    Mol Microbiol; 2008 Apr; 68(1):216-22. PubMed ID: 18312273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissection of the ATP-driven reaction cycle of the bacteriophage T4 DNA replication processivity clamp loading system.
    Pietroni P; Young MC; Latham GJ; von Hippel PH
    J Mol Biol; 2001 Jun; 309(4):869-91. PubMed ID: 11399065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A central swivel point in the RFC clamp loader controls PCNA opening and loading on DNA.
    Sakato M; O'Donnell M; Hingorani MM
    J Mol Biol; 2012 Feb; 416(2):163-75. PubMed ID: 22197374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clamp loading, unloading and intrinsic stability of the PCNA, beta and gp45 sliding clamps of human, E. coli and T4 replicases.
    Yao N; Turner J; Kelman Z; Stukenberg PT; Dean F; Shechter D; Pan ZQ; Hurwitz J; O'Donnell M
    Genes Cells; 1996 Jan; 1(1):101-13. PubMed ID: 9078370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of the ring-opened state of proliferating cell nuclear antigen by replication factor C promotes eukaryotic clamp-loading.
    Tainer JA; McCammon JA; Ivanov I
    J Am Chem Soc; 2010 Jun; 132(21):7372-8. PubMed ID: 20455582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of PCNA clamp binding and release in the clamp loading reaction catalyzed by Saccharomyces cerevisiae replication factor C.
    Marzahn MR; Hayner JN; Meyer JA; Bloom LB
    Biochim Biophys Acta; 2015 Jan; 1854(1):31-8. PubMed ID: 25450506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linchpin DNA-binding residues serve as go/no-go controls in the replication factor C-catalyzed clamp-loading mechanism.
    Liu J; Zhou Y; Hingorani MM
    J Biol Chem; 2017 Sep; 292(38):15892-15906. PubMed ID: 28808059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly and distributive action of an archaeal DNA polymerase holoenzyme.
    Bauer RJ; Wolff ID; Zuo X; Lin HK; Trakselis MA
    J Mol Biol; 2013 Nov; 425(23):4820-36. PubMed ID: 24035812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the role of PCNA-DNA contacts during clamp loading.
    McNally R; Bowman GD; Goedken ER; O'Donnell M; Kuriyan J
    BMC Struct Biol; 2010 Jan; 10():3. PubMed ID: 20113510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.