These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16169948)

  • 1. Integration of hydrodynamic and odorant inputs by local interneurons of the crayfish deutocerebrum.
    Mellon D
    J Exp Biol; 2005 Oct; 208(Pt 19):3711-20. PubMed ID: 16169948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional asymmetry in responses of local interneurons in the crayfish deutocerebrum to hydrodynamic stimulation of the lateral antennular flagellum.
    Mellon D; Humphrey JA
    J Exp Biol; 2007 Sep; 210(Pt 17):2961-8. PubMed ID: 17704071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological and physiological characterization of individual olfactory interneurons connecting the brain and eyestalk ganglia of the crayfish.
    Derby CD; Blaustein DN
    J Comp Physiol A; 1988 Oct; 163(6):777-94. PubMed ID: 3199344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergence of multimodal sensory input onto higher-level neurons of the crayfish olfactory pathway.
    Mellon D
    J Neurophysiol; 2000 Dec; 84(6):3043-55. PubMed ID: 11110831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smelling, feeling, tasting and touching: behavioral and neural integration of antennular chemosensory and mechanosensory inputs in the crayfish.
    Mellon D
    J Exp Biol; 2012 Jul; 215(Pt 13):2163-72. PubMed ID: 22675176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical and numerical investigation of the flow past the lateral antennular flagellum of the crayfish Procambarus clarkii.
    Humphrey JA; Mellon D
    J Exp Biol; 2007 Sep; 210(Pt 17):2969-78. PubMed ID: 17704072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology and physiological properties of interneurons in the olfactory midbrain of the crayfish.
    Arbas EA; Humphreys CJ; Ache BW
    J Comp Physiol A; 1988 Dec; 164(2):231-41. PubMed ID: 3244129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical responses and synaptic connections of giant serotonin-immunoreactive neurons in crayfish olfactory and accessory lobes.
    Sandeman DC; Sandeman RE
    J Comp Neurol; 1994 Mar; 341(1):130-44. PubMed ID: 8006219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nose too far: regional differences in olfactory receptor neuron efficacy along the crayfish antennule.
    Mellon D; Pravin S; Reidenbach MA
    Biol Bull; 2014 Aug; 227(1):40-50. PubMed ID: 25216501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crayfish brain interneurons that converge with serotonin giant cells in accessory lobe glomeruli.
    Sandeman D; Beltz B; Sandeman R
    J Comp Neurol; 1995 Feb; 352(2):263-79. PubMed ID: 7721994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Odorant-induced oscillations in the mushroom bodies of the locust.
    Laurent G; Naraghi M
    J Neurosci; 1994 May; 14(5 Pt 2):2993-3004. PubMed ID: 8182454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identified antennular near-field receptors trigger reflex flicking in the crayfish.
    Mellon D; Hamid OA
    J Exp Biol; 2012 May; 215(Pt 9):1559-66. PubMed ID: 22496293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of antennule morphology and flicking kinematics on flow and odor sampling by the freshwater crayfish, Procambarus clarkii.
    Nelson JM; Mellon D; Reidenbach MA
    Chem Senses; 2013 Oct; 38(8):729-41. PubMed ID: 23978687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration and segregation of inputs to higher-order neuropils of the crayfish brain.
    Sullivan JM; Beltz BS
    J Comp Neurol; 2005 Jan; 481(1):118-26. PubMed ID: 15558720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of leg movements on the synaptic activity of descending statocyst interneurons in crayfish, Procambarus clarkii.
    Hama N; Takahata M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Dec; 189(12):877-88. PubMed ID: 14593487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local spiking interneurons controlling the equilibrium response in the crayfish Procambarus clarkii.
    Nakagawa H; Hisada M
    J Comp Physiol A; 1992 Mar; 170(3):291-302. PubMed ID: 1593498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response properties of crayfish antennules to hydrodynamic stimuli: functional differences in the lateral and medial flagella.
    Monteclaro HM; Anraku K; Matsuoka T
    J Exp Biol; 2010 Nov; 213(Pt 21):3683-91. PubMed ID: 20952616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta.
    Christensen TA; Waldrop BR; Harrow ID; Hildebrand JG
    J Comp Physiol A; 1993 Oct; 173(4):385-99. PubMed ID: 8254565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendritic initiation and propagation of spikes and spike bursts in a multimodal sensory interneuron: the crustacean parasol cell.
    Mellon D
    J Neurophysiol; 2003 Oct; 90(4):2465-77. PubMed ID: 12789014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active dendritic properties constrain input-output relationships in neurons of the central olfactory pathway in the crayfish forebrain.
    Mellon D
    Microsc Res Tech; 2003 Feb; 60(3):278-90. PubMed ID: 12539158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.