These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas. Wang H; Sugiyama Y; Hikima T; Sugano E; Tomita H; Takahashi T; Ishizuka T; Yawo H J Biol Chem; 2009 Feb; 284(9):5685-96. PubMed ID: 19103605 [TBL] [Abstract][Full Text] [Related]
5. Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2. Inaguma A; Tsukamoto H; Kato HE; Kimura T; Ishizuka T; Oishi S; Yawo H; Nureki O; Furutani Y J Biol Chem; 2015 May; 290(18):11623-34. PubMed ID: 25796616 [TBL] [Abstract][Full Text] [Related]
6. Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation. Tsunoda SP; Hegemann P Photochem Photobiol; 2009; 85(2):564-9. PubMed ID: 19192197 [TBL] [Abstract][Full Text] [Related]
7. Modeling light-induced currents in the eye of Chlamydomonas reinhardtii. Gradmann D; Ehlenbeck S; Hegemann P J Membr Biol; 2002 Sep; 189(2):93-104. PubMed ID: 12235485 [TBL] [Abstract][Full Text] [Related]
8. Two open states with progressive proton selectivities in the branched channelrhodopsin-2 photocycle. Berndt A; Prigge M; Gradmann D; Hegemann P Biophys J; 2010 Mar; 98(5):753-61. PubMed ID: 20197028 [TBL] [Abstract][Full Text] [Related]
9. Glutamate residue 90 in the predicted transmembrane domain 2 is crucial for cation flux through channelrhodopsin 2. Ruffert K; Himmel B; Lall D; Bamann C; Bamberg E; Betz H; Eulenburg V Biochem Biophys Res Commun; 2011 Jul; 410(4):737-43. PubMed ID: 21683688 [TBL] [Abstract][Full Text] [Related]