These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16169988)

  • 1. Slip sliding away: load-dependence of velocity generated by skeletal muscle myosin molecules in the laser trap.
    Debold EP; Patlak JB; Warshaw DM
    Biophys J; 2005 Nov; 89(5):L34-6. PubMed ID: 16169988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biochemical kinetics underlying actin movement generated by one and many skeletal muscle myosin molecules.
    Baker JE; Brosseau C; Joel PB; Warshaw DM
    Biophys J; 2002 Apr; 82(4):2134-47. PubMed ID: 11916869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap.
    Guilford WH; Dupuis DE; Kennedy G; Wu J; Patlak JB; Warshaw DM
    Biophys J; 1997 Mar; 72(3):1006-21. PubMed ID: 9138552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of muscle contraction based on the Langevin equation with actomyosin potentials.
    Tamura Y; Ito A; Saito M
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):273-283. PubMed ID: 27472485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The kinetics underlying the velocity of smooth muscle myosin filament sliding on actin filaments in vitro.
    Haldeman BD; Brizendine RK; Facemyer KC; Baker JE; Cremo CR
    J Biol Chem; 2014 Jul; 289(30):21055-70. PubMed ID: 24907276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconciling the working strokes of a single head of skeletal muscle myosin estimated from laser-trap experiments and crystal structures.
    Sleep J; Lewalle A; Smith D
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1278-82. PubMed ID: 16428290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergent mechanics of actomyosin drive punctuated contractions and shape network morphology in the cell cortex.
    Miller CJ; Harris D; Weaver R; Ermentrout GB; Davidson LA
    PLoS Comput Biol; 2018 Sep; 14(9):e1006344. PubMed ID: 30222728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forces measured with micro-fabricated cantilevers during actomyosin interactions produced by filaments containing different myosin isoforms and loop 1 structures.
    Kalganov A; Shalabi N; Zitouni N; Kachmar LH; Lauzon AM; Rassier DE
    Biochim Biophys Acta; 2013 Mar; 1830(3):2710-9. PubMed ID: 23671932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces.
    Ishijima A; Kojima H; Higuchi H; Harada Y; Funatsu T; Yanagida T
    Biophys J; 1996 Jan; 70(1):383-400. PubMed ID: 8770215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative actions between myosin heads bring effective functions.
    Esaki S; Ishii Y; Nishikawa M; Yanagida T
    Biosystems; 2007 Apr; 88(3):293-300. PubMed ID: 17187925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching of actin-myosin motors by voltage-induced pH bias in vitro.
    Hatori K; Iwase T; Wada R
    Arch Biochem Biophys; 2016 Aug; 603():64-71. PubMed ID: 27210738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement of single myosin filaments and myosin step size on an actin filament suspended in solution by a laser trap.
    Saito K; Aoki T; Aoki T; Yanagida T
    Biophys J; 1994 Mar; 66(3 Pt 1):769-77. PubMed ID: 8011909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state force-velocity relation in the ATP-dependent sliding movement of myosin-coated beads on actin cables in vitro studied with a centrifuge microscope.
    Oiwa K; Chaen S; Kamitsubo E; Shimmen T; Sugi H
    Proc Natl Acad Sci U S A; 1990 Oct; 87(20):7893-7. PubMed ID: 2236007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of fluctuation in step size on actin-myosin sliding motion.
    Kagawa Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011923. PubMed ID: 17358200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Velocity of myosin-based actin sliding depends on attachment and detachment kinetics and reaches a maximum when myosin-binding sites on actin saturate.
    Stewart TJ; Murthy V; Dugan SP; Baker JE
    J Biol Chem; 2021 Nov; 297(5):101178. PubMed ID: 34508779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of the work done by ATP-induced actin-myosin sliding on the initial baseline force: its implications for kinetic properties of myosin heads in muscle contraction.
    Sugi H; Oiwa K; Chaen S
    Adv Exp Med Biol; 1993; 332():303-9; discussion 310-1. PubMed ID: 8109344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule measurement of the stiffness of the rigor myosin head.
    Lewalle A; Steffen W; Stevenson O; Ouyang Z; Sleep J
    Biophys J; 2008 Mar; 94(6):2160-9. PubMed ID: 18065470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of the secondary actin binding site of myosin II.
    Van Dijk J; Furch M; Lafont C; Manstein DJ; Chaussepied P
    Biochemistry; 1999 Nov; 38(46):15078-85. PubMed ID: 10563790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Link between the enzymatic kinetics and mechanical behavior in an actomyosin motor.
    Amitani I; Sakamoto T; Ando T
    Biophys J; 2001 Jan; 80(1):379-97. PubMed ID: 11159410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of single actin-myosin interactions.
    Finer JT; Mehta AD; Spudich JA
    Biophys J; 1995 Apr; 68(4 Suppl):291S-296S; discussion 296S-297S. PubMed ID: 7787094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.