These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16170523)

  • 1. Water permeability in human airway epithelium.
    Pedersen PS; Procida K; Larsen PL; Holstein-Rathlou NH; Frederiksen O
    Pflugers Arch; 2005 Dec; 451(3):464-73. PubMed ID: 16170523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress.
    Pedersen PS; Braunstein TH; Jørgensen A; Larsen PL; Holstein-Rathlou NH; Frederiksen O
    Pflugers Arch; 2007 Mar; 453(6):777-85. PubMed ID: 17043812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid absorption related to ion transport in human airway epithelial spheroids.
    Pedersen PS; Holstein-Rathlou NH; Larsen PL; Qvortrup K; Frederiksen O
    Am J Physiol; 1999 Dec; 277(6):L1096-103. PubMed ID: 10600878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion transport in epithelial spheroids derived from human airway cells.
    Pedersen PS; Frederiksen O; Holstein-Rathlou NH; Larsen PL; Qvortrup K
    Am J Physiol; 1999 Jan; 276(1):L75-80. PubMed ID: 9887058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis.
    Knowles MR; Clarke LL; Boucher RC
    N Engl J Med; 1991 Aug; 325(8):533-8. PubMed ID: 1857389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmotic water permeabilities of cultured, well-differentiated normal and cystic fibrosis airway epithelia.
    Matsui H; Davis CW; Tarran R; Boucher RC
    J Clin Invest; 2000 May; 105(10):1419-27. PubMed ID: 10811849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation.
    Boucher RC; Stutts MJ; Knowles MR; Cantley L; Gatzy JT
    J Clin Invest; 1986 Nov; 78(5):1245-52. PubMed ID: 3771796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CFTR and differentiation markers expression in non-CF and delta F 508 homozygous CF nasal epithelium.
    Dupuit F; Kälin N; Brézillon S; Hinnrasky J; Tümmler B; Puchelle E
    J Clin Invest; 1995 Sep; 96(3):1601-11. PubMed ID: 7544810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen consumption and ouabain binding sites in cystic fibrosis nasal epithelium.
    Stutts MJ; Knowles MR; Gatzy JT; Boucher RC
    Pediatr Res; 1986 Dec; 20(12):1316-20. PubMed ID: 2432456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defective fluid transport by cystic fibrosis airway epithelia.
    Smith JJ; Karp PH; Welsh MJ
    J Clin Invest; 1994 Mar; 93(3):1307-11. PubMed ID: 8132771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocols for in vivo measurement of the ion transport defects in cystic fibrosis nasal epithelium.
    Middleton PG; Geddes DM; Alton EW
    Eur Respir J; 1994 Nov; 7(11):2050-6. PubMed ID: 7875281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cAMP stimulates bicarbonate secretion across normal, but not cystic fibrosis airway epithelia.
    Smith JJ; Welsh MJ
    J Clin Invest; 1992 Apr; 89(4):1148-53. PubMed ID: 1313448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo nasal potential difference: techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis.
    Knowles MR; Paradiso AM; Boucher RC
    Hum Gene Ther; 1995 Apr; 6(4):445-55. PubMed ID: 7542031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypertonic saline therapy in cystic fibrosis: Evidence against the proposed mechanism involving aquaporins.
    Levin MH; Sullivan S; Nielson D; Yang B; Finkbeiner WE; Verkman AS
    J Biol Chem; 2006 Sep; 281(35):25803-12. PubMed ID: 16829520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal apical cell membrane in cystic fibrosis respiratory epithelium. An in vitro electrophysiologic analysis.
    Cotton CU; Stutts MJ; Knowles MR; Gatzy JT; Boucher RC
    J Clin Invest; 1987 Jan; 79(1):80-5. PubMed ID: 3793933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarized distribution of HCO3- transport in human normal and cystic fibrosis nasal epithelia.
    Paradiso AM; Coakley RD; Boucher RC
    J Physiol; 2003 Apr; 548(Pt 1):203-18. PubMed ID: 12562898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of water permeability by anisotonic solutions in frog corneal epithelium.
    Candia OA; Patarca R; Alvarez LJ
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):378-84. PubMed ID: 9477997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide has no beneficial effects on ion transport defects in cystic fibrosis human nasal epithelium.
    Rückes-Nilges C; Lindemann H; Klimek T; Glanz H; Weber WM
    Pflugers Arch; 2000 Nov; 441(1):133-7. PubMed ID: 11205052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid and electrolyte transport by cultured human airway epithelia.
    Smith JJ; Welsh MJ
    J Clin Invest; 1993 Apr; 91(4):1590-7. PubMed ID: 8473502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resveratrol ameliorates abnormalities of fluid and electrolyte secretion in a hypoxia-Induced model of acquired CFTR deficiency.
    Woodworth BA
    Laryngoscope; 2015 Oct; 125 Suppl 7(0 7):S1-S13. PubMed ID: 25946147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.