These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16170823)

  • 1. Hyperspectral mapping-combining cathodoluminescence and X-ray collection in an electron microprobe.
    Macrae CM; Wilson NC; Johnson SA; Phillips PL; Otsuki M
    Microsc Res Tech; 2005 Aug; 67(5):271-7. PubMed ID: 16170823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron probe microanalysis of biological soft tissues: principle and technique.
    Lechene C
    Fed Proc; 1980 Sep; 39(11):2871-80. PubMed ID: 7409208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined energy detector-wavelength dispersive spectrometer electron probe microanalysis of biological soft tissue samples.
    Ingram FD; Ingram MJ
    Scan Electron Microsc; 1983; (Pt 2):853-60. PubMed ID: 6635579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperspectral cathodoluminescence imaging and analysis extending from ultraviolet to near infrared.
    MacRae CM; Wilson NC; Torpy A; Davidson CJ
    Microsc Microanal; 2012 Dec; 18(6):1239-45. PubMed ID: 23164334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of aluminum oxide and polyethylene wear particles from joint endoprostheses using cathodoluminescence and x-ray analysis in SEM.
    Roschger P; Hoerl EM; Stachelberger H; Plenk H
    J Biomed Mater Res; 1980 Nov; 14(6):765-76. PubMed ID: 7052207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microanalysis approach to investigate problems encountered in mycology.
    Thibaut M; Ansel M; de Azevedo Carneiro J
    Am J Pathol; 1978 Jan; 90(1):23-32. PubMed ID: 619693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The new X-ray mapping: X-ray spectrum imaging above 100 kHz output count rate with the silicon drift detector.
    Newbury DE
    Microsc Microanal; 2006 Feb; 12(1):26-35. PubMed ID: 17481339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Celebrating 40 years of energy dispersive X-ray spectrometry in electron probe microanalysis: a historic and nostalgic look back into the beginnings.
    Keil K; Fitzgerald R; Heinrich KF
    Microsc Microanal; 2009 Dec; 15(6):476-83. PubMed ID: 19804655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The photoelectron x-ray microscope, a possible tool for analytical soft x-ray microscopy.
    Polack F; Lowenthal S
    Scanning Microsc Suppl; 1987; 1():41-6. PubMed ID: 3481105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative elemental mapping of biomedical specimens using the nuclear microprobe.
    Pallon J; Knox J
    Scanning Microsc; 1993 Dec; 7(4):1207-11; discussion 1211-4. PubMed ID: 8023086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray Crystal Spectrometers and Monochromators in Microanalysis.
    Wittry DB; Barbi NC
    Microsc Microanal; 2001 Mar; 7(2):124-141. PubMed ID: 12597825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially resolved cathodoluminescence of luminescent materials using an EDX detector.
    Smet PF; Van Haecke JE; Poelman D
    J Microsc; 2008 Jul; 231(Pt 1):1-8. PubMed ID: 18638184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray microanalysis as applied to fungal tissues.
    Thibaut M; Ansel M; de Azevedo Carneiro J
    Br J Exp Pathol; 1977 Apr; 58(2):209-14. PubMed ID: 558789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introduction: special issue on cathodoluminescence.
    Stevens-Kalceff M; MacRae C; Wight S
    Microsc Microanal; 2012 Dec; 18(6):1211. PubMed ID: 23211379
    [No Abstract]   [Full Text] [Related]  

  • 15. Quantitative cathodoluminescence mapping with application to a Kalgoorlie scheelite.
    MacRae CM; Wilson NC; Brugger J
    Microsc Microanal; 2009 Jun; 15(3):222-30. PubMed ID: 19460178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray mapping in electron-beam instruments.
    Friel JJ; Lyman CE
    Microsc Microanal; 2006 Feb; 12(1):2-25. PubMed ID: 17481338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress in electron energy loss analysis for biological specimens.
    Cosslett VE
    Scan Electron Microsc; 1980; (Pt 2):575-82, 534. PubMed ID: 6999609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved X-ray Spectrum Simulation for Electron Microprobe Analysis.
    Duncumb P; Barkshire IR; Statham PJ
    Microsc Microanal; 2001 Jul; 7(4):341-355. PubMed ID: 12597809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly and reliability of an X-ray microanalyser system with a possibility for independent mass measurement.
    Siklós L
    Acta Biochim Biophys Acad Sci Hung; 1983; 18(3-4):211-22. PubMed ID: 6678099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microprobe analysis in human pathology.
    Baker D; Kupke KG; Ingram P; Roggli VL; Shelburne JD
    Scan Electron Microsc; 1985; (Pt 2):659-80. PubMed ID: 3901236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.