These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16170947)

  • 21. Effects of a feedback signal in a computer mouse on movement behaviour, muscle load, productivity, comfort and user friendliness.
    de Korte EM; de Kraker H; Bongers PM; van Lingen P
    Ergonomics; 2008 Nov; 51(11):1757-75. PubMed ID: 18941979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assisting people with multiple disabilities improve their computer pointing efficiency with thumb poke through a standard trackball.
    Shih CH; Shih CT
    Res Dev Disabil; 2010; 31(6):1615-22. PubMed ID: 20570485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radiologist assessment of PACS user interface devices.
    Weiss DL; Siddiqui KM; Scopelliti J
    J Am Coll Radiol; 2006 Apr; 3(4):265-73. PubMed ID: 17412058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of input device and motion type on a cursor-positioning task.
    Yau YJ; Hwang SL; Chao CJ
    Percept Mot Skills; 2008 Feb; 106(1):76-90. PubMed ID: 18459358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of flat, angled, and vertical computer mice and their effects on wrist posture, pointing performance, and preference.
    Odell D; Johnson P
    Work; 2015; 52(2):245-53. PubMed ID: 26444940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Touch a screen or turn a knob: choosing the best device for the job.
    Rogers WA; Fisk AD; McLaughlin AC; Pak R
    Hum Factors; 2005; 47(2):271-88. PubMed ID: 16170938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of tactile, auditory, and visual feedback in a pointing task using a mouse-type device.
    Akamatsu M; MacKenzie IS; Hasbroucq T
    Ergonomics; 1995 Apr; 38(4):816-27. PubMed ID: 7729406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physical exposure differences between children and adults when using standard and small computer input devices.
    Blackstone JM; Karr C; Camp J; Johnson PW
    Ergonomics; 2008 Jun; 51(6):872-89. PubMed ID: 18484401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enabling devices, empowering people: the design and evaluation of Trackball EdgeWrite.
    Wobbrock JO; Myers BA
    Disabil Rehabil Assist Technol; 2008 Jan; 3(1):35-56. PubMed ID: 18416517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of four cursor control devices during a target acquisition task for laparoscopic tool control.
    Herring SR; Trejo AE; Hallbeck MS
    Appl Ergon; 2010 Jan; 41(1):47-57. PubMed ID: 19426963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A haptic and auditory assistive user interface: helping the blinds on their computer operations.
    Jaijongrak VR; Kumazawa I; Thiemjarus S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975341. PubMed ID: 22275546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Augmented kinematic feedback from haptic virtual reality for dental skill acquisition.
    Suebnukarn S; Haddawy P; Rhienmora P; Jittimanee P; Viratket P
    J Dent Educ; 2010 Dec; 74(12):1357-66. PubMed ID: 21123503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impact of on-road motion on BMS touch screen device operation.
    Goode N; Lenné MG; Salmon P
    Ergonomics; 2012; 55(9):986-96. PubMed ID: 22676650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance of the five-point grip pen in three screen-based tasks.
    Wu FG; Luo S
    Appl Ergon; 2006 Sep; 37(5):629-39. PubMed ID: 16476407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Practice and carryover effects when using small interaction devices.
    Sutter C; Oehl M; Armbrüster C
    Appl Ergon; 2011 Mar; 42(3):437-44. PubMed ID: 20934683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skills learning in robot-assisted surgery is benefited by task-specific augmented feedback.
    Vallabhajosula S; Judkins TN; Mukherjee M; Suh IH; Oleynikov D; Siu KC
    Surg Innov; 2013 Dec; 20(6):639-47. PubMed ID: 23575913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A tentative efficiency index for pointing device use in computer aided design: A pilot study.
    Coelho DA; Lourenço ML
    Work; 2018; 61(1):157-170. PubMed ID: 30223418
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Objective surgical performance evaluation based on haptic feedback.
    Moody L; Baber C; Arvanitis TN
    Stud Health Technol Inform; 2002; 85():304-10. PubMed ID: 15458106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the use of low-cost computer peripherals for the assessment of motor dysfunction in Parkinson's disease--quantification of bradykinesia using target tracking tasks.
    Allen DP; Playfer JR; Aly NM; Duffey P; Heald A; Smith SL; Halliday DM
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):286-94. PubMed ID: 17601199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.