These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 1617145)

  • 1. A sensitive measure of surface stress in the resting neutrophil.
    Needham D; Hochmuth RM
    Biophys J; 1992 Jun; 61(6):1664-70. PubMed ID: 1617145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscosity of passive human neutrophils undergoing small deformations.
    Hochmuth RM; Ting-Beall HP; Beaty BB; Needham D; Tran-Son-Tay R
    Biophys J; 1993 May; 64(5):1596-601. PubMed ID: 8324194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration.
    Evans E; Yeung A
    Biophys J; 1989 Jul; 56(1):151-60. PubMed ID: 2752085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the membrane cortex in neutrophil deformation in small pipets.
    Zhelev DV; Needham D; Hochmuth RM
    Biophys J; 1994 Aug; 67(2):696-705. PubMed ID: 7948682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic area compressibility modulus of red cell membrane.
    Evans EA; Waugh R; Melnik L
    Biophys J; 1976 Jun; 16(6):585-95. PubMed ID: 1276386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent recovery of passive neutrophils after large deformation.
    Tran-Son-Tay R; Needham D; Yeung A; Hochmuth RM
    Biophys J; 1991 Oct; 60(4):856-66. PubMed ID: 1742456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive mechanical behavior of human neutrophils: power-law fluid.
    Tsai MA; Frank RS; Waugh RE
    Biophys J; 1993 Nov; 65(5):2078-88. PubMed ID: 8298037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoelasticity of large lecithin bilayer vesicles.
    Kwok R; Evans E
    Biophys J; 1981 Sep; 35(3):637-52. PubMed ID: 7272454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of neutrophil membrane compliance and microstructure probed with a micropipet-based piconewton force transducer.
    Simon SI; Nyunt T; Florine-Casteel K; Ritchie K; Ting-Beall HP; Evans E; Needham D
    Ann Biomed Eng; 2007 Apr; 35(4):595-604. PubMed ID: 17370125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanics of neutrophils: synthetic modeling of three experiments.
    Herant M; Marganski WA; Dembo M
    Biophys J; 2003 May; 84(5):3389-413. PubMed ID: 12719267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Affinity of red blood cell membrane for particle surfaces measured by the extent of particle encapsulation.
    Evans E; Buxbaum K
    Biophys J; 1981 Apr; 34(1):1-12. PubMed ID: 7213927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics of neutrophil phagocytosis: behavior of the cortical tension.
    Herant M; Heinrich V; Dembo M
    J Cell Sci; 2005 May; 118(Pt 9):1789-97. PubMed ID: 15827090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of the flow of highly viscous drops down a tapered tube.
    Tran-Son-Tay R; Kirk TF; Zhelev DV; Hochmuth RM
    J Biomech Eng; 1994 May; 116(2):172-7. PubMed ID: 8078323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility.
    Needham D; Hochmuth RM
    Biophys J; 1989 May; 55(5):1001-9. PubMed ID: 2720075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets.
    Yeung A; Evans E
    Biophys J; 1989 Jul; 56(1):139-49. PubMed ID: 2752083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and deformation properties of red blood cells: concepts and quantitative methods.
    Evans EA
    Methods Enzymol; 1989; 173():3-35. PubMed ID: 2674613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Baseline mechanical characterization of J774 macrophages.
    Lam J; Herant M; Dembo M; Heinrich V
    Biophys J; 2009 Jan; 96(1):248-54. PubMed ID: 18835898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells.
    Evans EA
    Biophys J; 1980 May; 30(2):265-84. PubMed ID: 7260275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations of the apparent area expansivity modulus of red blood cell membrane by electric fields.
    Katnik C; Waugh R
    Biophys J; 1990 Apr; 57(4):877-82. PubMed ID: 2344470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheological analysis and measurement of neutrophil indentation.
    Lomakina EB; Spillmann CM; King MR; Waugh RE
    Biophys J; 2004 Dec; 87(6):4246-58. PubMed ID: 15361412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.