BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 16171575)

  • 1. Interactions between canine plasminogen and 8-anilino-1-naphthalene sulfonate: structural insights from a fluorescent probe.
    Carter DM; Kornblatt JA
    Cell Mol Biol (Noisy-le-grand); 2005 Sep; 51 Suppl():OL755-65. PubMed ID: 16171575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and binding determinants of the recombinant kringle-2 domain of human plasminogen to an internal peptide from a group A Streptococcal surface protein.
    Rios-Steiner JL; Schenone M; Mochalkin I; Tulinsky A; Castellino FJ
    J Mol Biol; 2001 May; 308(4):705-19. PubMed ID: 11350170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of conformational changes in immunoglobulin G using isothermal titration calorimetry with low-molecular-weight probes.
    Rispens T; Lakemond CM; Derksen NI; Aalberse RC
    Anal Biochem; 2008 Sep; 380(2):303-9. PubMed ID: 18577365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand preferences of kringle 2 and homologous domains of human plasminogen: canvassing weak, intermediate, and high-affinity binding sites by 1H-NMR.
    Marti DN; Hu CK; An SS; von Haller P; Schaller J; Llinás M
    Biochemistry; 1997 Sep; 36(39):11591-604. PubMed ID: 9305949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the Tanford transition in beta-lactoglobulin by 8-anilino-1-naphthalene sulfonate and mass spectrometry.
    Santambrogio C; Grandori R
    Rapid Commun Mass Spectrom; 2008 Dec; 22(24):4049-54. PubMed ID: 19016256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unfolding of alpha-momorcharin proceeds through the compact folded intermediate.
    Fukunaga Y; Nishimoto E; Otosu T; Murakami Y; Yamashita S
    J Biochem; 2008 Oct; 144(4):457-66. PubMed ID: 18603588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The perturbations of the native state of goat alpha-lactalbumin induced by 1,1'-bis(4-anilino-5-naphthalenesulfonate) are Ca2+-dependent.
    Vanderheeren G; Hanssens I; Noyelle K; Van Dael H; Joniau M
    Biophys J; 1998 Nov; 75(5):2195-204. PubMed ID: 9788914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2,2,2-Trifluoroethanol-Induced structural change of peanut agglutinin at different pH: A comparative account.
    Dev S; Khan RH; Surolia A
    IUBMB Life; 2006 Aug; 58(8):473-9. PubMed ID: 16916785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and thermodynamics of the interaction of 1-anilino-naphthalene-8-sulfonate with proteins.
    Cattoni DI; Kaufman SB; González Flecha FL
    Biochim Biophys Acta; 2009 Nov; 1794(11):1700-8. PubMed ID: 19683079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Picosecond time-resolved fluorescent spectroscopy of 1-anilino-8-naphthalene sulfonate binding with staphylococcal nuclease in the native and molten globule states.
    Gao G; Li Y; Wang W; Zhong D; Wang S; Gong Q
    J Photochem Photobiol B; 2015 Apr; 145():60-5. PubMed ID: 25771383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2,2,2-trifluoroethanol-induced molten globule state of concanavalin a and energetics of 8-anilinonaphthalene sulfonate binding: calorimetric and spectroscopic investigation.
    Banerjee T; Kishore N
    J Phys Chem B; 2005 Dec; 109(47):22655-62. PubMed ID: 16853949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of apolipoprotein(a) kringle IV37 free and complexed with 6-aminohexanoic acid and with p-aminomethylbenzoic acid: existence of novel and expected binding modes.
    Mikol V; LoGrasso PV; Boettcher BR
    J Mol Biol; 1996 Mar; 256(4):751-61. PubMed ID: 8642595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction of the fluorescent probe 1-anilinonaphthalene-8-sulfonate with Carlsberg subtilisin.
    Karasaki Y; Ohno M
    J Biochem; 1980 Apr; 87(4):1235-41. PubMed ID: 6993456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1-Anilino-8-naphthalene sulfonate (ANS) is not a desirable probe for determining the molten globule state of chymopapain.
    Qadeer A; Rabbani G; Zaidi N; Ahmad E; Khan JM; Khan RH
    PLoS One; 2012; 7(11):e50633. PubMed ID: 23209794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and ligand binding determinants of the recombinant kringle 5 domain of human plasminogen.
    Chang Y; Mochalkin I; McCance SG; Cheng B; Tulinsky A; Castellino FJ
    Biochemistry; 1998 Mar; 37(10):3258-71. PubMed ID: 9521645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent probe studies of haptoglobin type 2-1.
    Russo SF; Chen WW-C
    Physiol Chem Phys; 1976; 8(3):229-36. PubMed ID: 13439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of partially folded intermediates of papain in presence of cationic, anionic, and nonionic detergents at low pH.
    Naeem A; Fatima S; Khan RH
    Biopolymers; 2006 Sep; 83(1):1-10. PubMed ID: 16598711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational plasticity of cryptolepain: accumulation of partially unfolded states in denaturants induced equilibrium unfolding.
    Pande M; Dubey VK; Sahu V; Jagannadham MV
    J Biotechnol; 2007 Sep; 131(4):404-17. PubMed ID: 17825936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low versus high molecular weight poly(ethylene glycol)-induced states of stem bromelain at low pH: stabilization of molten globule and unfolded states.
    Ahmad B; Ansari MA; Sen P; Khan RH
    Biopolymers; 2006 Apr; 81(5):350-9. PubMed ID: 16345002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1-anilino-8-naphthalene sulfonate as a protein conformational tightening agent.
    Matulis D; Baumann CG; Bloomfield VA; Lovrien RE
    Biopolymers; 1999 May; 49(6):451-8. PubMed ID: 10193192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.