BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 16171601)

  • 1. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of renal function and microvascular blood flow after suprarenal aortic clamping and reperfusion (SPACR) above the superior mesenteric artery is greatly augmented compared with SPACR above the renal arteries.
    Myers SI; Wang L; Myers DJ
    J Vasc Surg; 2007 Feb; 45(2):357-66. PubMed ID: 17264017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoregulation of renal and splanchnic blood flow following infra-renal aortic clamping is mediated by nitric oxide and vasodilator prostanoids.
    Myers SI; Turnage RH; Hernandez R; Castenada A; Valentine RJ
    J Cardiovasc Surg (Torino); 1996 Apr; 37(2):97-103. PubMed ID: 8675533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of NO and COX pathways in mediation of adenosine A1 receptor-induced renal vasoconstriction.
    Walkowska A; Dobrowolski L; Kompanowska-Jezierska E; Sadowski J
    Exp Biol Med (Maywood); 2007 May; 232(5):690-4. PubMed ID: 17463166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney.
    Kakoki M; Zou AP; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R91-7. PubMed ID: 11404282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood flow-dependent changes in renal interstitial guanosine 3',5'-cyclic monophosphate in rabbits.
    Nishiyama A; Kimura S; Fukui T; Rahman M; Yoneyama H; Kosaka H; Abe Y
    Am J Physiol Renal Physiol; 2002 Feb; 282(2):F238-44. PubMed ID: 11788437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.
    Zou AP; Wu F; Cowley AW
    Hypertension; 1998 Jan; 31(1 Pt 2):271-6. PubMed ID: 9453315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide and renal nerves: comparison of effects on renal circulation and sodium excretion in anesthetized rats.
    Walkowska A; Kompanowska-Jezierska E; Sadowski J
    Kidney Int; 2004 Aug; 66(2):705-12. PubMed ID: 15253725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prostaglandins but not nitric oxide protect renal medullary perfusion in anaesthetised rats receiving angiotensin II.
    Badzyńska B; Grzelec-Mojzesowicz M; Sadowski J
    J Physiol; 2003 May; 548(Pt 3):875-80. PubMed ID: 12640010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of renal nerve stimulation on intrarenal blood flow in rats with intact or inactivated NO synthases.
    Walkowska A; Badzyńska B; Kompanowska-Jezierska E; Johns EJ; Sadowski J
    Acta Physiol Scand; 2005 Jan; 183(1):99-105. PubMed ID: 15654923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.
    Persson P; Fasching A; Teerlink T; Hansell P; Palm F
    Am J Physiol Renal Physiol; 2017 Feb; 312(2):F278-F283. PubMed ID: 27927650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat.
    Agmon Y; Peleg H; Greenfeld Z; Rosen S; Brezis M
    J Clin Invest; 1994 Sep; 94(3):1069-75. PubMed ID: 8083347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intrarenal blood flow distribution and role of nitric oxide in diabetic rats.
    Nakanishi K; Onuma S; Higa M; Nagai Y; Inokuchi T
    Metabolism; 2005 Jun; 54(6):788-92. PubMed ID: 15931616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulation of blood perfusion in the renal cortex and medulla by reactive oxygen species and nitric oxide in the anaesthetised rat.
    Ahmeda AF; Johns EJ
    Acta Physiol (Oxf); 2012 Mar; 204(3):443-50. PubMed ID: 21827636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time monitoring of nitric oxide and blood flow during ischemia-reperfusion in the rat testis.
    Kono T; Saito M; Kinoshita Y; Satoh I; Shinbori C; Satoh K
    Mol Cell Biochem; 2006 Jun; 286(1-2):139-45. PubMed ID: 16496212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chronic renal medullary nitric oxide inhibition on blood pressure.
    Mattson DL; Lu S; Nakanishi K; Papanek PE; Cowley AW
    Am J Physiol; 1994 May; 266(5 Pt 2):H1918-26. PubMed ID: 8203591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local renal medullary L-NAME infusion enhances the effect of long-term angiotensin II treatment.
    Szentiványi M; Maeda CY; Cowley AW
    Hypertension; 1999 Jan; 33(1 Pt 2):440-5. PubMed ID: 9931144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. alpha(2)-adrenergic receptor-mediated increase in NO production buffers renal medullary vasoconstriction.
    Zou AP; Cowley AW
    Am J Physiol Regul Integr Comp Physiol; 2000 Sep; 279(3):R769-77. PubMed ID: 10956233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.