BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 16171601)

  • 21. Renal hemodynamic responses to intrarenal infusion of acetylcholine: comparison with effects of PGE2 and NO donor.
    Badzyńska B; Sadowski J
    Kidney Int; 2006 May; 69(10):1774-9. PubMed ID: 16572111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Renal cortical and medullary blood flow responses to L-NAME and ANG II in wild-type, nNOS null mutant, and eNOS null mutant mice.
    Mattson DL; Meister CJ
    Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R991-7. PubMed ID: 15961532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of ATP on rat renal haemodynamics and excretion: role of sodium intake, nitric oxide and cytochrome P450.
    Dobrowolski L; Walkowska A; Kompanowska-Jezierska E; Kuczeriszka M; Sadowski J
    Acta Physiol (Oxf); 2007 Jan; 189(1):77-85. PubMed ID: 17280559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Renal hemodynamic interactions of nitric oxide and angiotensin II].
    Nakanishi K; Hamada K; Hara N; Nagai Y; Nakamura K
    Nihon Jinzo Gakkai Shi; 1998 Nov; 40(8):567-72. PubMed ID: 9893455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrarenal distribution of renal blood flow after acute and chronic administration of nitric oxide-synthase inhibitor.
    Bartha J; Vág J; Hably C
    Acta Physiol Hung; 1995; 83(4):403-10. PubMed ID: 8863902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats.
    Legrand M; Almac E; Mik EG; Johannes T; Kandil A; Bezemer R; Payen D; Ince C
    Am J Physiol Renal Physiol; 2009 May; 296(5):F1109-17. PubMed ID: 19225052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Renal tissue NO and intrarenal haemodynamics during experimental variations of NO content in anaesthetised rats.
    Grzelec-Mojzesowicz M; Sadowski J
    J Physiol Pharmacol; 2007 Mar; 58(1):149-63. PubMed ID: 17440233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relative roles of nitric oxide, prostanoids and angiotensin II in the regulation of canine glomerular hemodynamics. A micropuncture study.
    Kramer HJ; Horacek V; Bäcker A; Vaneckova I; Heller J
    Kidney Blood Press Res; 2004; 27(1):10-7. PubMed ID: 14583658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.
    Ishikawa K; Calzavacca P; Bellomo R; Bailey M; May CN
    Crit Care Med; 2012 Aug; 40(8):2368-75. PubMed ID: 22622397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of renal medullary blood flow in the development of L-NAME hypertension in rats.
    Nakanishi K; Mattson DL; Cowley AW
    Am J Physiol; 1995 Feb; 268(2 Pt 2):R317-23. PubMed ID: 7864223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contributions of nitric oxide and prostanoids and their signaling pathways to the renal medullary vasodilator effect of U46619 (9-11-dideoxy-11 alpha,9a-epoxymethano-prostaglandin F(2a)) in the rat.
    Oyekan AO
    J Pharmacol Exp Ther; 2003 Feb; 304(2):507-12. PubMed ID: 12538801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression and actions of heme oxygenase in the renal medulla of rats.
    Zou AP; Billington H; Su N; Cowley AW
    Hypertension; 2000 Jan; 35(1 Pt 2):342-7. PubMed ID: 10642322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective modulation of endogenous nitric oxide formation in ischemia/reperfusion injury in isolated rat hearts--effects on regional myocardial flow and enzyme release.
    Han H; Kaiser R; Hu K; Laser M; Ertl G; Bauersachs J
    Basic Res Cardiol; 2003 May; 98(3):165-74. PubMed ID: 12883834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Angiotensin II and renal medullary blood flow in Lyon rats.
    Sarkis A; Liu KL; Lo M; Benzoni D
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F365-72. PubMed ID: 12529274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prevention of renal cortical ischemia during aortic clamping with prostaglandin E1.
    Arbid EJ; Hakaim AG; LaMorte WW; Menzoian JO
    Arch Surg; 1995 Mar; 130(3):326-30; discussion 330-1. PubMed ID: 7887802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N-acetylcysteine ameliorates renal microcirculation: studies in rats.
    Heyman SN; Goldfarb M; Shina A; Karmeli F; Rosen S
    Kidney Int; 2003 Feb; 63(2):634-41. PubMed ID: 12631128
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Opposed effects of prostaglandin E2 on perfusion of rat renal cortex and medulla: interactions with the renin-angiotensin system.
    Badzynska B; Sadowski J
    Exp Physiol; 2008 Dec; 93(12):1292-302. PubMed ID: 18586855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dopamine increases renal medullary blood flow without improving regional hypoxia.
    Heyman SN; Kaminski N; Brezis M
    Exp Nephrol; 1995; 3(6):331-7. PubMed ID: 8528677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protective effects of acute lithium preconditioning against renal ischemia/reperfusion injury in rat: role of nitric oxide and cyclooxygenase systems.
    Talab SS; Elmi A; Emami H; Nezami BG; Assa S; Ghasemi M; Tavangar SM; Dehpour AR
    Eur J Pharmacol; 2012 Apr; 681(1-3):94-9. PubMed ID: 22342279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of endogenous nitric oxide on cardiac systolic and diastolic function during ischemia and reperfusion in the rat isolated perfused heart.
    Pabla R; Curtis MJ
    J Mol Cell Cardiol; 1996 Oct; 28(10):2111-21. PubMed ID: 8930806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.