These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 16171774)
41. Binding of Bacillus thuringiensis Cry1A toxins to brush border membrane vesicles of midgut from Cry1Ac susceptible and resistant Plutella xylostella. Higuchi M; Haginoya K; Yamazaki T; Miyamoto K; Katagiri T; Tomimoto K; Shitomi Y; Hayakawa T; Sato R; Hori H Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):716-24. PubMed ID: 17543562 [TBL] [Abstract][Full Text] [Related]
42. [Conformation of delta-endotoxin from Bacillus thuringiensis var.tenebrionis induced by methanol]. Loseva OI; Tiktopulo EI; Dobritsa AP; Potekhin SA Mol Biol (Mosk); 2000; 34(1):123-9. PubMed ID: 10732349 [No Abstract] [Full Text] [Related]
43. Optimised expression in Escherichia coli and purification of the functional form of the Bacillus thuringiensis Cry4Aa delta-endotoxin. Boonserm P; Pornwiroon W; Katzenmeier G; Panyim S; Angsuthanasombat C Protein Expr Purif; 2004 Jun; 35(2):397-403. PubMed ID: 15135419 [TBL] [Abstract][Full Text] [Related]
44. Amino acid substitutions in alphaA and alphaC of Cyt2Aa2 alter hemolytic activity and mosquito-larvicidal specificity. Promdonkoy B; Rungrod A; Promdonkoy P; Pathaichindachote W; Krittanai C; Panyim S J Biotechnol; 2008 Feb; 133(3):287-93. PubMed ID: 18054404 [TBL] [Abstract][Full Text] [Related]
45. Structurally conserved aromaticity of Tyr249 and Phe264 in helix 7 is important for toxicity of the Bacillus thuringiensis Cry4Ba toxin. Tiewsiri K; Angsuthanasombat C J Biochem Mol Biol; 2007 Mar; 40(2):163-71. PubMed ID: 17394765 [TBL] [Abstract][Full Text] [Related]
46. Structural requirements of the unique disulphide bond and the proline-rich motif within the alpha4-alpha5 loop for larvicidal activity of the Bacillus thuringiensis Cry4Aa delta-endotoxin. Tapaneeyakorn S; Pornwiroon W; Katzenmeier G; Angsuthanasombat C Biochem Biophys Res Commun; 2005 May; 330(2):519-25. PubMed ID: 15796913 [TBL] [Abstract][Full Text] [Related]
47. Carboxy-terminal half of Cry1C can help vegetative insecticidal protein to form inclusion bodies in the mother cell of Bacillus thuringiensis. Song R; Peng D; Yu Z; Sun M Appl Microbiol Biotechnol; 2008 Sep; 80(4):647-54. PubMed ID: 18685842 [TBL] [Abstract][Full Text] [Related]
48. Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and membrane-inserted pore channel. Rausell C; Pardo-López L; Sánchez J; Muñoz-Garay C; Morera C; Soberón M; Bravo A J Biol Chem; 2004 Dec; 279(53):55168-75. PubMed ID: 15498772 [TBL] [Abstract][Full Text] [Related]
49. Functional assembly of 260-kDa oligomers required for mosquito-larvicidal activity of the Bacillus thuringiensis Cry4Ba toxin. Khomkhum N; Leetachewa S; Angsuthanasombat C; Moonsom S Peptides; 2015 Jun; 68():183-9. PubMed ID: 25687547 [TBL] [Abstract][Full Text] [Related]
50. An ADAM metalloprotease is a Cry3Aa Bacillus thuringiensis toxin receptor. Ochoa-Campuzano C; Real MD; Martínez-Ramírez AC; Bravo A; Rausell C Biochem Biophys Res Commun; 2007 Oct; 362(2):437-42. PubMed ID: 17714689 [TBL] [Abstract][Full Text] [Related]
51. Nontoxic crystal protein from Bacillus thuringiensis demonstrates a remarkable structural similarity to beta-pore-forming toxins. Akiba T; Higuchi K; Mizuki E; Ekino K; Shin T; Ohba M; Kanai R; Harata K Proteins; 2006 Apr; 63(1):243-8. PubMed ID: 16400649 [No Abstract] [Full Text] [Related]
52. Novel preparation and characterization of the alpha4-loop-alpha5 membrane-perturbing peptide from the Bacillus thuringiensis Cry4Ba delta-endotoxin. Leetachewa S; Katzenmeier G; Angsuthanasombat C J Biochem Mol Biol; 2006 May; 39(3):270-7. PubMed ID: 16756755 [TBL] [Abstract][Full Text] [Related]
53. N546 in beta18-beta19 loop is important for binding and toxicity of the Bacillus thuringiensis Cry1Ac toxin. Xiang WF; Qiu XL; Zhi DX; Min ZX; Yuan L; Quan YZ J Invertebr Pathol; 2009 Jun; 101(2):119-23. PubMed ID: 19416731 [TBL] [Abstract][Full Text] [Related]
54. Membrane interactions and surface hydrophobicity of Bacillus thuringiensis delta-endotoxin CryIC. Butko P; Cournoyer M; Pusztai-Carey M; Surewicz WK FEBS Lett; 1994 Feb; 340(1-2):89-92. PubMed ID: 8119414 [TBL] [Abstract][Full Text] [Related]
55. Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers. Calvez P; Bussières S; Eric Demers ; Salesse C Biochimie; 2009 Jun; 91(6):718-33. PubMed ID: 19345719 [TBL] [Abstract][Full Text] [Related]
57. Novel strategy for protein production using a peptide tag derived from Bacillus thuringiensis Cry4Aa. Hayakawa T; Sato S; Iwamoto S; Sudo S; Sakamoto Y; Yamashita T; Uchida M; Matsushima K; Kashino Y; Sakai H FEBS J; 2010 Jul; 277(13):2883-91. PubMed ID: 20528915 [TBL] [Abstract][Full Text] [Related]
58. [Interaction between insecticidal crystal proteins and DNA molecule from Bacillus thuringiensis]. Xia L; Sun Y; Mo X; Ding X Wei Sheng Wu Xue Bao; 2003 Feb; 43(1):127-31. PubMed ID: 16276883 [No Abstract] [Full Text] [Related]
59. Ion channels formed in planar lipid bilayers by the dipteran-specific Cry4B Bacillus thuringiensis toxin and its alpha1-alpha5 fragment. Puntheeranurak T; Uawithya P; Potvin L; Angsuthanasombat C; Schwartz JL Mol Membr Biol; 2004; 21(1):67-74. PubMed ID: 14668140 [TBL] [Abstract][Full Text] [Related]
60. Comparison of different methodologies for binding assays of Bacillus thuringiensis toxins to membrane vesicles from insect midguts. Herrero S; Ferré J J Invertebr Pathol; 2001 Nov; 78(4):275-7. PubMed ID: 12009811 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]