These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 16171948)

  • 1. Block of spontaneous termination of paroxysmal depolarizations by forskolin (buccal ganglia, Helix pomatia).
    Ure A; Altrup U
    Neurosci Lett; 2006 Jan; 392(1-2):10-5. PubMed ID: 16171948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paroxysmal depolarization shifts (PDS) induce non-synaptic responses in neighboured neurons (buccal ganglia, Helix pomatia).
    Altrup U; Wiemann M
    Brain Res; 2003 May; 972(1-2):186-96. PubMed ID: 12711092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pacemaker potentials are the physiologic basis of epileptiform activity in the buccal ganglia of Helix pomatia.
    Altrup U
    Acta Biol Hung; 2004; 55(1-4):261-8. PubMed ID: 15270242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epileptic neurons induce augmenting synaptic depolarizations in non-epileptic neurons (buccal ganglia, Helix pomatia).
    Wiemann M; Altrup U; Speckmann EJ
    Neurosci Lett; 1997 Nov; 237(2-3):101-4. PubMed ID: 9453225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epileptogenic drugs in a model nervous system: electrophysiological effects and incorporation into a phospholipid layer.
    Altrup U; Häder M; Cáceres JL; Malcharek S; Meyer M; Galla HJ
    Brain Res; 2006 Nov; 1122(1):65-77. PubMed ID: 17049497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epileptogenicity and epileptic activity: mechanisms in an invertebrate model nervous system.
    Altrup U
    Curr Drug Targets; 2004 Jul; 5(5):473-84. PubMed ID: 15216913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous pacemaker potentials develop into paroxysmal depolarization shifts (PDSs) with application of an epileptogenic drug.
    Altrup U; Häder M; Storz U
    Brain Res; 2003 Jun; 975(1-2):73-84. PubMed ID: 12763594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heptanol exerts epileptiform effects in identified neurons of the buccal ganglia of Helix pomatia.
    Tarner IH; Altrup U; Speckmann EJ
    Neurosci Lett; 1999 Apr; 264(1-3):73-6. PubMed ID: 10320017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the hypnotic drug etomidate in a model nervous system (Buccal ganglia, Helix pomatia).
    Altrup U; Lehmenkühler A; Speckmann EJ
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1991; 99(3):579-87. PubMed ID: 1685437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous increase of epileptogenic effects following application of proteolytic enzymes (buccal ganglia of Helix pomatia).
    Altrup U; Ure A; Joschko A
    Acta Biol Hung; 2004; 55(1-4):269-72. PubMed ID: 15270243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of valproate in a model nervous system (buccal ganglia of Helix pomatia): I. Antiepileptic actions.
    Altrup U; Gerlach G; Reith H; Said MN; Speckmann EJ
    Epilepsia; 1992; 33(4):743-52. PubMed ID: 1628593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blocking of the axon spikes by pentylenetetrazol in an identified neuron of the snail Helix lucorum, with consequent induction of epileptic activity in the cell body of the same neuron.
    Maratou E; Theophilidis G
    Neurosci Lett; 1999 Jun; 268(2):69-72. PubMed ID: 10400080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecstasy and methamphetamine elicit action potential bursts via different mechanisms in a central snail neuron.
    Lin PL; Tsai MC; Lu GL; Lu DY; Chuang CM; Yang HY; Huang SS; Chen YH
    Neurotoxicology; 2010 Jan; 31(1):26-41. PubMed ID: 19958791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of valproate in a model nervous system (buccal ganglia of Helix pomatia): II. Epileptogenic actions.
    Altrup U; Reith H; Speckmann EJ
    Epilepsia; 1992; 33(4):753-9. PubMed ID: 1628594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of pentylenetetrazol on the metacerebral neuron of Helix pomatia.
    Fehér O; Erdélyi L; Papp A
    Gen Physiol Biophys; 1988 Oct; 7(5):505-16. PubMed ID: 3234739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paroxysmal depolarization and changes in action potentials induced by pentylenetetrazol in isolated neurons of Helix pomatia.
    Speckmann EJ; Caspers H
    Epilepsia; 1973 Dec; 14(4):397-408. PubMed ID: 4521096
    [No Abstract]   [Full Text] [Related]  

  • 17. Decrease of free calcium concentration at the outer surface of identified snail neurons during paroxysmal depolarization shifts.
    Lücke A; Speckmann EJ; Altrup U; Lehmenkühler A; Walden J
    Neurosci Lett; 1990 May; 112(2-3):190-3. PubMed ID: 2359518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the fruit essential oil of Cuminum cyminum Linn. (Apiaceae) on pentylenetetrazol-induced epileptiform activity in F1 neurones of Helix aspersa.
    Janahmadi M; Niazi F; Danyali S; Kamalinejad M
    J Ethnopharmacol; 2006 Mar; 104(1-2):278-82. PubMed ID: 16226415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of valproate derivatives I. Antiepileptic efficacy of amides, structural analogs and esters.
    Redecker C; Altrup U; Hoppe D; Düsing R; Speckmann EJ
    Neuropharmacology; 2000 Jan; 39(2):254-66. PubMed ID: 10670421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron.
    Chen YH; Lin PL; Wong RW; Wu YT; Hsu HY; Tsai MC; Lin MJ; Hsu YC; Lin CH
    Neuroscience; 2012 Oct; 223():412-28. PubMed ID: 22742907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.