BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 16172654)

  • 1. A microchip capillary electrophoretic reactor: a new methodology for direct measurement of dissociation kinetics of metal complexes.
    Takahashi T; Ohtsuka K; Iki N; Hoshino H
    Analyst; 2005 Oct; 130(10):1337-9. PubMed ID: 16172654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation kinetic analysis of Ce(III) complex with Quin2 by microchip capillary electrophoretic reactor.
    Ohtsuka K; Iki N; Hoshino H; Takahashi T
    Anal Sci; 2013; 29(5):553-7. PubMed ID: 23665629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-substitution mode capillary electrophoretic reactor: extending capillary electrophoretic reactor toward measurement of slow dissociation kinetics with a half-life of hours.
    Iki N; Takahashi M; Takahashi T; Hoshino H
    Anal Chem; 2009 Sep; 81(18):7849-54. PubMed ID: 19697915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of monomolecular binding constants of neutral phenols into the beta-cyclodextrin by continuous frontal analysis in capillary and microchip electrophoresis via a competitive assay.
    Le Saux T; Hisamoto H; Terabe S
    J Chromatogr A; 2006 Feb; 1104(1-2):352-8. PubMed ID: 16376902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microchip capillary electrophoresis: an introduction.
    Henry CS
    Methods Mol Biol; 2006; 339():1-10. PubMed ID: 16790862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and simultaneous detection of heavy metals using a simple and reliable microchip-electrochemistry route: An alternative approach to food analysis.
    Chailapakul O; Korsrisakul S; Siangproh W; Grudpan K
    Talanta; 2008 Jan; 74(4):683-9. PubMed ID: 18371693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CE of phytosiderophores and related metal species in plants.
    Xuan Y; Scheuermann EB; Meda AR; Jacob P; von Wirén N; Weber G
    Electrophoresis; 2007 Oct; 28(19):3507-19. PubMed ID: 17768721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of ligand protonation on higher-order metal complexation kinetics in aqueous systems.
    Town RM; Leeuwen HP
    J Phys Chem A; 2008 Mar; 112(12):2563-71. PubMed ID: 18311952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microchip capillary electrophoresis with solid-state electrochemiluminescence detector.
    Du Y; Wei H; Kang J; Yan J; Yin XB; Yang X; Wang E
    Anal Chem; 2005 Dec; 77(24):7993-7. PubMed ID: 16351147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the enzymatic conversion of urea to ammonium by conventional or microchip capillary electrophoresis with contactless conductivity detection.
    Schuchert-Shi A; Hauser PC
    Anal Biochem; 2008 May; 376(2):262-7. PubMed ID: 18358223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low EOF rate measurement based on constant effective mobility in microchip CE.
    Wang W; Zhao L; Zhou F; Zhang JR; Zhu JJ; Chen HY
    Electrophoresis; 2007 Aug; 28(16):2893-6. PubMed ID: 17702065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully packed capillary electrochromatographic microchip with self-assembly colloidal silica beads.
    Park J; Lee D; Kim W; Horiike S; Nishimoto T; Lee SH; Ahn CH
    Anal Chem; 2007 Apr; 79(8):3214-9. PubMed ID: 17358045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid on-column analysis of glucosamine and its mutarotation by microchip capillary electrophoresis.
    Skelley AM; Mathies RA
    J Chromatogr A; 2006 Nov; 1132(1-2):304-9. PubMed ID: 16919655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Floating resistivity detector for microchip electrophoresis.
    Tay ET; Law WS; Sim SP; Feng H; Zhao JH; Li SF
    Electrophoresis; 2007 Dec; 28(24):4620-8. PubMed ID: 18072226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal analysis with capillary zone electrophoresis.
    Malik AK
    Methods Mol Biol; 2008; 384():21-42. PubMed ID: 18392564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient dynamic modification of plastic microfluidic devices using proteins in microchip capillary electrophoresis.
    Naruishi N; Tanaka Y; Higashi T; Wakida S
    J Chromatogr A; 2006 Oct; 1130(2):169-74. PubMed ID: 16860810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of cationic neurotransmitters and metabolites in brain homogenates by microchip electrophoresis and carbon nanotube-modified amperometry.
    Vlcková M; Schwarz MA
    J Chromatogr A; 2007 Feb; 1142(2):214-21. PubMed ID: 17223116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microchip capillary electrophoresis.
    Tay ET; Law WS; Li SF; Kricka LJ
    Methods Mol Biol; 2009; 509():159-68. PubMed ID: 19212721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography.
    Gustafsson O; Mogensen KB; Kutter JP
    Electrophoresis; 2008 Aug; 29(15):3145-52. PubMed ID: 18618461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving sensitivity in simultaneous determination of copper carboxylates by nonaqueous capillary electrophoresis.
    Laamanen PL; Blanco E; Cela R; Matilainen R
    J Chromatogr A; 2006 Mar; 1110(1-2):261-7. PubMed ID: 16464460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.