BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16172655)

  • 1. Measurement of dielectrophoretic mobility of single micro-particles in a flow channel.
    Ikeda I; Monjushiro H; Watarai H
    Analyst; 2005 Oct; 130(10):1340-2. PubMed ID: 16172655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis.
    Dürr M; Kentsch J; Müller T; Schnelle T; Stelzle M
    Electrophoresis; 2003 Feb; 24(4):722-31. PubMed ID: 12601744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A design of nanosized PEGylated-latex mixed polymer solution for microchip electrophoresis.
    Tabuchi M; Katsuyama Y; Nogami K; Nagata H; Wakuda K; Fujimoto M; Nagasaki Y; Yoshikawa K; Kataoka K; Baba Y
    Lab Chip; 2005 Feb; 5(2):199-204. PubMed ID: 15672135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection.
    Holmes D; Morgan H; Green NG
    Biosens Bioelectron; 2006 Feb; 21(8):1621-30. PubMed ID: 16332434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip high-speed sorting of micron-sized particles for high-throughput analysis.
    Holmes D; Sandison ME; Green NG; Morgan H
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):129-35. PubMed ID: 16441169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic induction of the electric field into free-flow electrophoresis devices.
    Janasek D; Schilling M; Manz A; Franzke J
    Lab Chip; 2006 Jun; 6(6):710-3. PubMed ID: 16738720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using channel depth to isolate and control flow in a micro free-flow electrophoresis device.
    Fonslow BR; Barocas VH; Bowser MT
    Anal Chem; 2006 Aug; 78(15):5369-74. PubMed ID: 16878871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes.
    Chu H; Doh I; Cho YH
    Lab Chip; 2009 Mar; 9(5):686-91. PubMed ID: 19224018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectrophoretic capture of mammalian cells using transparent indium tin oxide electrodes in microfluidic systems.
    Sankaran B; Racic M; Tona A; Rao MV; Gaitan M; Forry SP
    Electrophoresis; 2008 Dec; 29(24):5047-54. PubMed ID: 19130589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel tuneable optical elements based on nanoparticle suspensions in microfluidics.
    Kayani AA; Zhang C; Khoshmanesh K; Campbell JL; Mitchell A; Kalantar-Zadeh K
    Electrophoresis; 2010 Mar; 31(6):1071-9. PubMed ID: 20309917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip.
    Wiklund M; Günther C; Lemor R; Jäger M; Fuhr G; Hertz HM
    Lab Chip; 2006 Dec; 6(12):1537-44. PubMed ID: 17203158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3-D dielectrophoretic filter chip.
    Iliescu C; Xu G; Loe FC; Ong PL; Tay FE
    Electrophoresis; 2007 Apr; 28(7):1107-14. PubMed ID: 17330223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomolecule detection via target mediated nanoparticle aggregation and dielectrophoretic impedance measurement.
    Costanzo PJ; Liang E; Patten TE; Collins SD; Smith RL
    Lab Chip; 2005 Jun; 5(6):606-10. PubMed ID: 15915252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels.
    Pommer MS; Zhang Y; Keerthi N; Chen D; Thomson JA; Meinhart CD; Soh HT
    Electrophoresis; 2008 Mar; 29(6):1213-8. PubMed ID: 18288670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical capture and lysis of vaccinia virus particles using silicon nano-scale probe array.
    Park K; Akin D; Bashir R
    Biomed Microdevices; 2007 Dec; 9(6):877-83. PubMed ID: 17610069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrohydrodynamic-mediated dielectrophoretic separation and transport based on asymmetric electrode pairs.
    Du E; Manoochehri S
    Electrophoresis; 2008 Dec; 29(24):5017-25. PubMed ID: 19130586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low EOF rate measurement based on constant effective mobility in microchip CE.
    Wang W; Zhao L; Zhou F; Zhang JR; Zhu JJ; Chen HY
    Electrophoresis; 2007 Aug; 28(16):2893-6. PubMed ID: 17702065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and evaluation of single- and dual-channel (Pi-design) microchip electrophoresis with electrochemical detection.
    Pozo-Ayuso DF; Castaño-Alvarez M; Fernández-la-Villa A; García-Granda M; Fernández-Abedul MT; Costa-García A; Rodríguez-García J
    J Chromatogr A; 2008 Feb; 1180(1-2):193-202. PubMed ID: 18177663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.