These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 16172872)
1. Biogas production from crop residues on a farm-scale level: is it economically feasible under conditions in Sweden? Svensson LM; Christensson K; Björnsson L Bioprocess Biosyst Eng; 2005 Dec; 28(3):139-48. PubMed ID: 16172872 [TBL] [Abstract][Full Text] [Related]
2. Biogas production from crop residues on a farm-scale level in Sweden: scale, choice of substrate and utilisation rate most important parameters for financial feasibility. Svensson LM; Christensson K; Björnsson L Bioprocess Biosyst Eng; 2006 Jul; 29(2):137-42. PubMed ID: 16770592 [TBL] [Abstract][Full Text] [Related]
3. Biogas from energy crops--optimal pre-treatments and storage, co-digestion and energy balance in boreal conditions. Seppälä M; Paavola T; Lehtomäki A; Pakarinen O; Rintala J Water Sci Technol; 2008; 58(9):1857-63. PubMed ID: 19029729 [TBL] [Abstract][Full Text] [Related]
4. Co-digestion of energy crops and the source-sorted organic fraction of municipal solid waste. Nordberg A; Edström M Water Sci Technol; 2005; 52(1-2):217-22. PubMed ID: 16180431 [TBL] [Abstract][Full Text] [Related]
5. The impact of increasing energy crop addition on process performance and residual methane potential in anaerobic digestion. Lindorfer H; Pérez López C; Resch C; Braun R; Kirchmayr R Water Sci Technol; 2007; 56(10):55-63. PubMed ID: 18048977 [TBL] [Abstract][Full Text] [Related]
6. Two-stage anaerobic digestion of energy crops: methane production, nitrogen mineralisation and heavy metal mobilisation. Lehtomäki A; Björnsson L Environ Technol; 2006 Feb; 27(2):209-18. PubMed ID: 16506517 [TBL] [Abstract][Full Text] [Related]
7. Substituting energy crops with organic wastes and agro-industrial residues for biogas production. Schievano A; D'Imporzano G; Adani F J Environ Manage; 2009 Jun; 90(8):2537-41. PubMed ID: 19254824 [TBL] [Abstract][Full Text] [Related]
8. Energy recovery from municipal solid waste in an anaerobic reactor. Jeyapriya SP; Saseetharan MK J Environ Sci Eng; 2008 Jul; 50(3):235-8. PubMed ID: 19552079 [TBL] [Abstract][Full Text] [Related]
9. Bioenergy conversion studies of organic fraction of MSW: kinetic studies and gas yield--organic loading relationships for process optimisation. Rao MS; Singh SP Bioresour Technol; 2004 Nov; 95(2):173-85. PubMed ID: 15246442 [TBL] [Abstract][Full Text] [Related]
10. Enhancing performance in anaerobic high-solids stratified bed digesters by straw bed implementation. Svensson LM; Björnsson L; Mattiasson B Bioresour Technol; 2007 Jan; 98(1):46-52. PubMed ID: 16426845 [TBL] [Abstract][Full Text] [Related]
11. Foodwaste as a co-substrate in a fed-batch anaerobic biowaste digester for constant biogas supply. Nayono SE; Gallert C; Winter J Water Sci Technol; 2009; 59(6):1169-78. PubMed ID: 19342813 [TBL] [Abstract][Full Text] [Related]
12. Effect of reactor configuration on biogas production from wheat straw hydrolysate. Kaparaju P; Serrano M; Angelidaki I Bioresour Technol; 2009 Dec; 100(24):6317-23. PubMed ID: 19647428 [TBL] [Abstract][Full Text] [Related]
13. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production. Nges IA; Escobar F; Fu X; Björnsson L Waste Manag; 2012 Jan; 32(1):53-9. PubMed ID: 21975301 [TBL] [Abstract][Full Text] [Related]
14. The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests. Hinken L; Urban I; Haun E; Urban I; Weichgrebe D; Rosenwinkel KH Water Sci Technol; 2008; 58(7):1453-9. PubMed ID: 18957759 [TBL] [Abstract][Full Text] [Related]
15. Doubling the organic loading rate in the co-digestion of energy crops and manure--a full scale case study. Lindorfer H; Corcoba A; Vasilieva V; Braun R; Kirchmayr R Bioresour Technol; 2008 Mar; 99(5):1148-56. PubMed ID: 17449245 [TBL] [Abstract][Full Text] [Related]
16. Dry anaerobic digestion in batch mode: design and operation of a laboratory-scale, completely mixed reactor. Guendouz J; Buffière P; Cacho J; Carrère M; Delgenes JP Waste Manag; 2010 Oct; 30(10):1768-71. PubMed ID: 20096555 [TBL] [Abstract][Full Text] [Related]
17. Minimization of greenhouse gas emission by application of anaerobic digestion process with biogas utilization. Yasui H; Komatsu K; Goel R; Matsuhashi R; Ohashi A; Harada H Water Sci Technol; 2005; 52(1-2):545-52. PubMed ID: 16180476 [TBL] [Abstract][Full Text] [Related]
18. Biogas from sugar beet press pulp as substitute of fossil fuel in sugar beet factories. Brooks L; Parravicini V; Svardal K; Kroiss H; Prendl L Water Sci Technol; 2008; 58(7):1497-504. PubMed ID: 18957765 [TBL] [Abstract][Full Text] [Related]
19. Co-digestion of energy crops and industrial confectionery by-products with cow manure: batch-scale and farm-scale evaluation. Kaparaju P; Luostarinen S; Kalmari E; Kalmari J; Rintala J Water Sci Technol; 2002; 45(10):275-80. PubMed ID: 12188558 [TBL] [Abstract][Full Text] [Related]
20. Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity. Wang G; Gavala HN; Skiadas IV; Ahring BK Waste Manag; 2009 Nov; 29(11):2830-5. PubMed ID: 19666217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]