These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 16173159)
1. Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium. Steinberg SL; Kluitenberg GJ; Jones SB; Daidzic NE; Reddi LN; Xiao M; Tuller M; Newman RM; Or D; Alexander JI J Am Soc Hortic Sci; 2005 Sep; 130(5):767-74. PubMed ID: 16173159 [TBL] [Abstract][Full Text] [Related]
2. Measurement of hydraulic characteristics of porous media used to grow plants in microgravity. Steinberg SL; Poritz D Soil Sci Soc Am J; 2005; 69(2):301-10. PubMed ID: 16052740 [TBL] [Abstract][Full Text] [Related]
3. Porous media matric potential and water content measurements during parabolic flight. Norikane JH; Jones SB; Steinberg SL; Levine HG; Or D Habitation (Elmsford); 2005; 10(2):117-26. PubMed ID: 15751144 [TBL] [Abstract][Full Text] [Related]
4. Near-term lander experiments for growing plants on Mars: requirements for information on chemical and physical properties of Mars regolith. Schuerger AC; Ming DW; Newsom HE; Ferl RJ; McKay CP Life Support Biosph Sci; 2002; 8(3-4):137-47. PubMed ID: 12481805 [TBL] [Abstract][Full Text] [Related]
5. A capillary-driven root module for plant growth in microgravity. Jones SB; Or D Adv Space Res; 1998; 22(10):1407-12. PubMed ID: 11542600 [TBL] [Abstract][Full Text] [Related]
6. Microgravity effects on water flow and distribution in unsaturated porous media: analyses of flight experiments. Jones SB; Or D Water Resour Res; 1999 Apr; 35(4):929-42. PubMed ID: 11543365 [TBL] [Abstract][Full Text] [Related]
7. Particulated growth media for optimal liquid and gaseous fluxes to plant roots in microgravity. Jones SB; Or D Adv Space Res; 1998; 22(10):1413-8. PubMed ID: 11542601 [TBL] [Abstract][Full Text] [Related]
8. [Pre-flight ground studies for the Water Offset Nutrient Delivery Experiment (WONDER): a spaceflight payload comparing two nutrient delivery systems for plant growth in space]. Kasahara H; Levine L; Tynes GK; Levine HG Biol Sci Space; 2001 Oct; 15(3):232-3. PubMed ID: 11997618 [No Abstract] [Full Text] [Related]
9. [Development of plant growth chambers for the experiments under microgravity conditions--development of measurement system of plant water uptake]. Saito T; Kobayashi Y; Shiga T; Arakawa Y; Takai M; Shimanuki M; Tani A; Goto E; Kitaya Y; Takahashi H Biol Sci Space; 1999 Sep; 13(3):226-7. PubMed ID: 12533009 [No Abstract] [Full Text] [Related]
10. Discontinuous pore fluid distribution under microgravity--KC-135 flight investigations. Reddi LN; Xiao M; Steinberg SL Soil Sci Soc Am J; 2005; 69(3):593-8. PubMed ID: 16052743 [TBL] [Abstract][Full Text] [Related]
11. [Development of plant growth chambers for the experiments under microgravity conditions (4)-results of two experiments for water circulation in parabolic flight]. Tani A; Tahara N; Seino K; Kitaya Y; Saito T; Goto E; Takahashi H Biol Sci Space; 1999 Sep; 13(3):224-5. PubMed ID: 12533008 [No Abstract] [Full Text] [Related]
12. Control of water and nutrients using a porous tube: a method for growing plants in space. Dreschel TW; Sager JC HortScience; 1989 Dec; 24(6):944-7. PubMed ID: 11540906 [TBL] [Abstract][Full Text] [Related]
13. Clay particle retention in small constructed wetlands. Braskerud BC Water Res; 2003 Sep; 37(16):3793-802. PubMed ID: 12909097 [TBL] [Abstract][Full Text] [Related]
14. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods. Chau JF; Or D; Sukop MC Water Resour Res; 2005 Aug; 41(8):W08410. PubMed ID: 16173154 [TBL] [Abstract][Full Text] [Related]
15. Modeling of two-phase flow in membranes and porous media in microgravity as applied to plant irrigation in space. Scovazzo P; Illangasekare TH; Hoehn A; Todd P Water Resour Res; 2001 May; 37(5):1231-43. PubMed ID: 12238522 [TBL] [Abstract][Full Text] [Related]
16. Monte Carlo analysis of field water flow comparing uni- and bimodal effective hydraulic parameters for structured soil. Coppola A; Basile A; Comegna A; Lamaddalena N J Contam Hydrol; 2009 Feb; 104(1-4):153-65. PubMed ID: 19027986 [TBL] [Abstract][Full Text] [Related]
17. Effects of root-induced compaction on rhizosphere hydraulic properties--X-ray microtomography imaging and numerical simulations. Aravena JE; Berli M; Ghezzehei TA; Tyler SW Environ Sci Technol; 2011 Jan; 45(2):425-31. PubMed ID: 21121599 [TBL] [Abstract][Full Text] [Related]
18. Microgravity effects on water supply and substrate properties in porous matrix root support systems. Bingham GE; Jones SB; Or D; Podolski IG; Levinskikh MA; Sytchov VN; Ivanova T; Kostov P; Sapunova S; Dandolov I; Bubenheim DB; Jahns G Acta Astronaut; 2000 Dec; 47(11):839-48. PubMed ID: 11708347 [TBL] [Abstract][Full Text] [Related]
19. Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Hati KM; Mandal KG; Misra AK; Ghosh PK; Bandyopadhyay KK Bioresour Technol; 2006 Nov; 97(16):2182-8. PubMed ID: 16289791 [TBL] [Abstract][Full Text] [Related]
20. Stray field nuclear magnetic resonance of soil water: development of a new, large probe and preliminary results. Kinchesh P; Samoilenko AA; Preston AR; Randall EW J Environ Qual; 2002; 31(2):494-9. PubMed ID: 11931439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]