BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16173462)

  • 1. Growth parameters and photosynthetic pigments in leaf segments of Zea mays exposed to cadmium, as related to protection mechanisms.
    Drazkiewicz M; Baszyński T
    J Plant Physiol; 2005 Sep; 162(9):1013-21. PubMed ID: 16173462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-dependent response of maize leaf segments to cadmium treatment: effect on chlorophyll fluorescence and phytochelatin accumulation.
    Drazkiewicz M; Tukendorf A; Baszyński T
    J Plant Physiol; 2003 Mar; 160(3):247-54. PubMed ID: 12749081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-priming mitigates detrimental effects of salinity on maize improving antioxidant defense and preserving photosynthetic efficiency.
    Panuccio MR; Chaabani S; Roula R; Muscolo A
    Plant Physiol Biochem; 2018 Nov; 132():465-474. PubMed ID: 30292163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper.
    Tanyolaç D; Ekmekçi Y; Unalan S
    Chemosphere; 2007 Feb; 67(1):89-98. PubMed ID: 17109927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of sulphur availability on cadmium-induced changes of nitrogen and sulphur metabolism in maize (Zea mays L.) leaves.
    Astolfi S; Zuchi S; Passera C
    J Plant Physiol; 2004 Jul; 161(7):795-802. PubMed ID: 15310068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of ozone on juvenile maize (Zea mays L.) plant photosynthesis: effects on vegetative biomass, pigmentation, and carboxylases (PEPc and Rubisco).
    Leitao L; Bethenod O; Biolley JP
    Plant Biol (Stuttg); 2007 Jul; 9(4):478-88. PubMed ID: 17401809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).
    Xu X; Liu C; Zhao X; Li R; Deng W
    Bull Environ Contam Toxicol; 2014 Nov; 93(5):618-24. PubMed ID: 25154813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cadmium and lead on phytochelatin accumulation in maize shoots and different root parts.
    Seregin IV; Vooijs R; Kozhevnikova AD; Ivanov VB; Schat H
    Dokl Biol Sci; 2007; 415():304-6. PubMed ID: 17929673
    [No Abstract]   [Full Text] [Related]  

  • 9. Assessment of the impact of increasing concentrations of ozone on photosynthetic components of maize (Zea mays L.), a C4 plant.
    Leitao L; Delacôte E; Dizengremel P; Le Thiec D; Biolley JP
    Environ Pollut; 2007 Mar; 146(1):5-8. PubMed ID: 17011686
    [No Abstract]   [Full Text] [Related]  

  • 10. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L.
    Seth CS; Kumar Chaturvedi P; Misra V
    Ecotoxicol Environ Saf; 2008 Sep; 71(1):76-85. PubMed ID: 18082263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overall plant responses to Cd and Pb metal stress in maize: Growth pattern, ultrastructure, and photosynthetic activity.
    Figlioli F; Sorrentino MC; Memoli V; Arena C; Maisto G; Giordano S; Capozzi F; Spagnuolo V
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1781-1790. PubMed ID: 30456613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars.
    Ekmekçi Y; Tanyolaç D; Ayhan B
    J Plant Physiol; 2008 Apr; 165(6):600-11. PubMed ID: 17728009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize.
    Vaculík M; Pavlovič A; Lux A
    Ecotoxicol Environ Saf; 2015 Oct; 120():66-73. PubMed ID: 26036417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants.
    Krantev A; Yordanova R; Janda T; Szalai G; Popova L
    J Plant Physiol; 2008 Jun; 165(9):920-31. PubMed ID: 17913285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foliar spray of TiO
    Lian J; Zhao L; Wu J; Xiong H; Bao Y; Zeb A; Tang J; Liu W
    Chemosphere; 2020 Jan; 239():124794. PubMed ID: 31521929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous DCPTA Ameliorates Simulated Drought Conditions by Improving the Growth and Photosynthetic Capacity of Maize Seedlings.
    Xie T; Gu W; Meng Y; Li J; Li L; Wang Y; Qu D; Wei S
    Sci Rep; 2017 Oct; 7(1):12684. PubMed ID: 28978944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in sucrose metabolism in maize varieties with different cadmium sensitivities under cadmium stress.
    Li C; Liu Y; Tian J; Zhu Y; Fan J
    PLoS One; 2020; 15(12):e0243835. PubMed ID: 33306745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. gamma-Glutamylcysteinylglutamic acid--a new homologue of glutathione in maize seedlings exposed to cadmium.
    Meuwly P; Thibault P; Rauser WE
    FEBS Lett; 1993 Dec; 336(3):472-6. PubMed ID: 8282113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cadmium on cork oak (Quercus suber L.) plants grown in hydroponics.
    Gogorcena Y; Larbi A; Andaluz S; Carpena RO; Abadía A; Abadía J
    Tree Physiol; 2011 Dec; 31(12):1401-12. PubMed ID: 22121153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress.
    Akhtar T; Zia-Ur-Rehman M; Naeem A; Nawaz R; Ali S; Murtaza G; Maqsood MA; Azhar M; Khalid H; Rizwan M
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5521-5529. PubMed ID: 28028706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.