These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 16173577)

  • 21. Microbial reduction of U(VI) under alkaline conditions: implications for radioactive waste geodisposal.
    Williamson AJ; Morris K; Law GT; Rizoulis A; Charnock JM; Lloyd JR
    Environ Sci Technol; 2014 Nov; 48(22):13549-56. PubMed ID: 25231875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conceptual and numerical model of uranium(VI) reductive immobilization in fractured subsurface sediments.
    Roden EE; Scheibe TD
    Chemosphere; 2005 Apr; 59(5):617-28. PubMed ID: 15792659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial reduction of uranium under iron- and sulfate-reducing conditions: Effect of amended goethite on microbial community composition and dynamics.
    Moon HS; McGuinness L; Kukkadapu RK; Peacock AD; Komlos J; Kerkhof LJ; Long PE; Jaffé PR
    Water Res; 2010 Jul; 44(14):4015-28. PubMed ID: 20541787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of biological uranium reduction using magnetic resonance.
    Vogt SJ; Stewart BD; Seymour JD; Peyton BM; Codd SL
    Biotechnol Bioeng; 2012 Apr; 109(4):877-83. PubMed ID: 22095467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resistance of solid-phase U(VI) to microbial reduction during in situ bioremediation of uranium-contaminated groundwater.
    Ortiz-Bernad I; Anderson RT; Vrionis HA; Lovley DR
    Appl Environ Microbiol; 2004 Dec; 70(12):7558-60. PubMed ID: 15574961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of uranium(VI) speciation on simultaneous microbial reduction of uranium(VI) and iron(III).
    Stewart BD; Amos RT; Fendorf S
    J Environ Qual; 2011; 40(1):90-7. PubMed ID: 21488497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria.
    Luo J; Weber FA; Cirpka OA; Wu WM; Nyman JL; Carley J; Jardine PM; Criddle CS; Kitanidis PK
    J Contam Hydrol; 2007 Jun; 92(1-2):129-48. PubMed ID: 17291626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Natural humics impact uranium bioreduction and oxidation.
    Gu B; Yan H; Zhou P; Watson DB; Park M; Istok J
    Environ Sci Technol; 2005 Jul; 39(14):5268-75. PubMed ID: 16082956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential remediation approach for uranium-contaminated groundwaters through potassium uranyl vanadate precipitation.
    Tokunaga TK; Kim Y; Wan J
    Environ Sci Technol; 2009 Jul; 43(14):5467-71. PubMed ID: 19708383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uranium(VI) reduction and removal by high performing purified anaerobic cultures from mine soil.
    Chabalala S; Chirwa EM
    Chemosphere; 2010 Jan; 78(1):52-5. PubMed ID: 19883933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological reduction of uranium in groundwater and subsurface soil.
    Abdelouas A; Lutze W; Gong W; Nuttall EH; Strietelmeier BA; Travis BJ
    Sci Total Environ; 2000 Apr; 250(1-3):21-35. PubMed ID: 10811248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium?
    Boonchayaanant B; Gu B; Wang W; Ortiz ME; Criddle CS
    Biodegradation; 2010 Feb; 21(1):81-95. PubMed ID: 19597947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer.
    Van Nostrand JD; Wu WM; Wu L; Deng Y; Carley J; Carroll S; He Z; Gu B; Luo J; Criddle CS; Watson DB; Jardine PM; Marsh TL; Tiedje JM; Hazen TC; Zhou J
    Environ Microbiol; 2009 Oct; 11(10):2611-26. PubMed ID: 19624708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissolution of uranium-bearing minerals and mobilization of uranium by organic ligands in a biologically reduced sediment.
    Luo W; Gu B
    Environ Sci Technol; 2011 Apr; 45(7):2994-9. PubMed ID: 21395303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uranium reduction.
    Wall JD; Krumholz LR
    Annu Rev Microbiol; 2006; 60():149-66. PubMed ID: 16704344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of uranium(VI) reduction by hydrogen sulfide in anoxic aqueous systems.
    Hua B; Xu H; Terry J; Deng B
    Environ Sci Technol; 2006 Aug; 40(15):4666-71. PubMed ID: 16913122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissolution and mobilization of uranium in a reduced sediment by natural humic substances under anaerobic conditions.
    Luo W; Gu B
    Environ Sci Technol; 2009 Jan; 43(1):152-6. PubMed ID: 19209599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. U(VI) adsorption on aquifer sediments at the Hanford Site.
    Um W; Serne RJ; Brown CF; Last GV
    J Contam Hydrol; 2007 Aug; 93(1-4):255-69. PubMed ID: 17499879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments.
    Holmes DE; Finneran KT; O'Neil RA; Lovley DR
    Appl Environ Microbiol; 2002 May; 68(5):2300-6. PubMed ID: 11976101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils.
    Martinez RJ; Beazley MJ; Taillefert M; Arakaki AK; Skolnick J; Sobecky PA
    Environ Microbiol; 2007 Dec; 9(12):3122-33. PubMed ID: 17991039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.