These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16173597)

  • 1. Field column study using zerovalent iron for mercury removal from contaminated groundwater.
    Weisener CG; Sale KS; Smyth DJ; Blowes DW
    Environ Sci Technol; 2005 Aug; 39(16):6306-12. PubMed ID: 16173597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ remediation of arsenic in simulated groundwater using zerovalent iron: laboratory column tests on combined effects of phosphate and silicate.
    Su C; Puls RW
    Environ Sci Technol; 2003 Jun; 37(11):2582-7. PubMed ID: 12831047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of copper shavings to remove mercury from contaminated groundwater or wastewater by amalgamation.
    Huttenloch P; Roehl KE; Czurda K
    Environ Sci Technol; 2003 Sep; 37(18):4269-73. PubMed ID: 14524463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects.
    Melitas N; Chuffe-Moscoso O; Farrell J
    Environ Sci Technol; 2001 Oct; 35(19):3948-53. PubMed ID: 11642457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.
    Liu Y; Mou H; Chen L; Mirza ZA; Liu L
    J Hazard Mater; 2015 Nov; 298():83-90. PubMed ID: 26026959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier.
    Wilkin RT; Su C; Ford RG; Paul CJ
    Environ Sci Technol; 2005 Jun; 39(12):4599-605. PubMed ID: 16047798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings.
    Lowry GV; Shaw S; Kim CS; Rytuba JJ; Brown GE
    Environ Sci Technol; 2004 Oct; 38(19):5101-11. PubMed ID: 15506205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium carbonate-based permeable reactive barriers for iron and manganese groundwater remediation at landfills.
    Wang Y; Pleasant S; Jain P; Powell J; Townsend T
    Waste Manag; 2016 Jul; 53():128-35. PubMed ID: 26992666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of polymer mats in series for sequential reactive barrier remediation of ammonium-contaminated groundwater: field evaluation.
    Patterson BM; Grassi ME; Robertson BS; Davis GB; Smith AJ; McKinley AJ
    Environ Sci Technol; 2004 Dec; 38(24):6846-54. PubMed ID: 15669348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies.
    Wilkin RT; Acree SD; Ross RR; Beak DG; Lee TR
    J Contam Hydrol; 2009 Apr; 106(1-2):1-14. PubMed ID: 19167133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of arsenic from groundwater by zerovalent iron and the role of sulfide.
    Köber R; Welter E; Ebert M; Dahmke A
    Environ Sci Technol; 2005 Oct; 39(20):8038-44. PubMed ID: 16295872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.
    Craw D
    J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron hydroxy carbonate formation in zerovalent iron permeable reactive barriers: characterization and evaluation of phase stability.
    Lee TR; Wilkin RT
    J Contam Hydrol; 2010 Jul; 116(1-4):47-57. PubMed ID: 20554346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles.
    Gong Y; Liu Y; Xiong Z; Kaback D; Zhao D
    Nanotechnology; 2012 Jul; 23(29):294007. PubMed ID: 22743738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new technology for the treatment of mercury contaminated water and soils.
    Zhuang JM; Walsh T; Lam T
    Environ Technol; 2003 Jul; 24(7):897-902. PubMed ID: 12916841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept.
    Phenrat T; Thongboot T; Lowry GV
    Environ Sci Technol; 2016 Jan; 50(2):872-80. PubMed ID: 26654836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers.
    Su C; Puls RW
    Chemosphere; 2007 Apr; 67(8):1653-62. PubMed ID: 17257645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury removal from contaminated groundwater: Performance and limitations of amalgamation through brass shavings.
    Richard JH; Biester H
    Water Res; 2016 Aug; 99():272-280. PubMed ID: 27176550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding soluble arsenate removal kinetics by zerovalent iron media.
    Melitas N; Wang J; Conklin M; O'Day P; Farrell J
    Environ Sci Technol; 2002 May; 36(9):2074-81. PubMed ID: 12026995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Iron-Based Materials for Remediation of Mercury in Water and Soil.
    Gong Y; Huang Y; Wang M; Liu F; Zhang T
    Bull Environ Contam Toxicol; 2019 May; 102(5):721-729. PubMed ID: 30756128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.