These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Fabrication and field emission properties of boron nanowire bundles. Liu F; Liang WJ; Su ZJ; Xia JX; Deng SZ; Chen J; She JC; Xu NS; Tian JF; Shen CM; Gao HJ Ultramicroscopy; 2009 Apr; 109(5):447-50. PubMed ID: 19171433 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of suspended silicon nanowire arrays. Lee KN; Jung SW; Shin KS; Kim WH; Lee MH; Seong WK Small; 2008 May; 4(5):642-8. PubMed ID: 18431721 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures. Gautam UK; Fang X; Bando Y; Zhan J; Golberg D ACS Nano; 2008 May; 2(5):1015-21. PubMed ID: 19206499 [TBL] [Abstract][Full Text] [Related]
6. A simple route to growth of silicon nanowires. Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306 [TBL] [Abstract][Full Text] [Related]
7. Molecular template assisted growth of ultrathin silicon carbide nanowires with strong green light emission and excellent field-emission properties. Xi G; He Y; Wang C Chemistry; 2010 May; 16(17):5184-90. PubMed ID: 20309964 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of nanowire channels with unidirectional alignment and controlled length by a simple, gas-blowing-assisted, selective-transfer-printing technique. Kim YK; Kang PS; Kim DI; Shin G; Kim GT; Ha JS Small; 2009 Mar; 5(6):727-34. PubMed ID: 19197970 [TBL] [Abstract][Full Text] [Related]
10. Size-manipulable synthesis of single-crystalline BaMnO3 and BaTi1/2Mn1/2O3 nanorods/nanowires. Hu CG; Liu H; Lao CS; Zhang LY; Davidovic D; Wang ZL J Phys Chem B; 2006 Jul; 110(29):14050-4. PubMed ID: 16854099 [TBL] [Abstract][Full Text] [Related]
13. A magnetic force microscopy study of the magnetic reversal of a single Fe nanowire. Wang T; Wang Y; Fu Y; Hasegawa T; Li FS; Saito H; Ishio S Nanotechnology; 2009 Mar; 20(10):105707. PubMed ID: 19417535 [TBL] [Abstract][Full Text] [Related]
15. Novel planar field emission of ultra-thin individual carbon nanotubes. Song X; Gao J; Fu Q; Xu J; Zhao Q; Yu D Nanotechnology; 2009 Oct; 20(40):405208. PubMed ID: 19752498 [TBL] [Abstract][Full Text] [Related]
16. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods. Singh N; Zhang T; Lee PS Nanotechnology; 2009 May; 20(19):195605. PubMed ID: 19420644 [TBL] [Abstract][Full Text] [Related]
17. Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation. Menke EJ; Brown MA; Li Q; Hemminger JC; Penner RM Langmuir; 2006 Dec; 22(25):10564-74. PubMed ID: 17129031 [TBL] [Abstract][Full Text] [Related]
18. Field emission studies of pulsed laser deposited LaB6 films on W and Re. Late DJ; More MA; Misra P; Singh BN; Kukreja LM; Joag DS Ultramicroscopy; 2007 Sep; 107(9):825-32. PubMed ID: 17391846 [TBL] [Abstract][Full Text] [Related]
19. True nanocable assemblies with insulating BN nanotube sheaths and conducting Cu nanowire cores. Zhou Z; Zhao J; Chen Z; Gao X; Lu JP; von Ragué Schleyer P; Yang CK J Phys Chem B; 2006 Feb; 110(6):2529-32. PubMed ID: 16471851 [TBL] [Abstract][Full Text] [Related]
20. Self-assembled ZnS nanowire arrays: synthesis, in situ Cu doping and field emission. Liu B; Bando Y; Jiang X; Li C; Fang X; Zeng H; Terao T; Tang C; Mitome M; Golberg D Nanotechnology; 2010 Sep; 21(37):375601. PubMed ID: 20714051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]